Euler problems/171 to 180: Difference between revisions
No edit summary |
(add problem 173) |
||
Line 1: | Line 1: | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=171 Problem 171] == | ||
Finding numbers for which the sum of the squares of the digits is a square. | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_171 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=172 Problem 172] == | ||
Investigating numbers with few repeated digits. | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_172 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=173 Problem 173] == | ||
Using up to one million tiles how many different "hollow" square laminae can be formed? | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_173= | |||
let c=div (10^6) 4 | |||
xm=floor$sqrt $fromIntegral c | |||
k=[div c x|x<-[1..xm]] | |||
in sum k-(div (xm*(xm+1)) 2) | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=174 Problem 174] == | ||
Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements. | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_174 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=175 Problem 175] == | ||
Fractions involving the number of different ways a number can be expressed as a sum of powers of 2. | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_175 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=176 Problem 176] == | ||
Rectangular triangles that share a cathetus. | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_176 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=177 Problem 177] == | ||
Integer angled Quadrilaterals. | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_177 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=178 Problem 178] == | ||
Step Numbers | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_178 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=179 Problem 179] == | ||
Consecutive positive divisors. | |||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_179 = undefined | |||
</haskell> | </haskell> | ||
== [http://projecteuler.net/index.php?section=problems&id= | == [http://projecteuler.net/index.php?section=problems&id=180 Problem 180] == | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_180 = undefined | |||
</haskell> | </haskell> |
Revision as of 13:27, 28 January 2008
Problem 171
Finding numbers for which the sum of the squares of the digits is a square.
Solution:
problem_171 = undefined
Problem 172
Investigating numbers with few repeated digits.
Solution:
problem_172 = undefined
Problem 173
Using up to one million tiles how many different "hollow" square laminae can be formed? Solution:
problem_173=
let c=div (10^6) 4
xm=floor$sqrt $fromIntegral c
k=[div c x|x<-[1..xm]]
in sum k-(div (xm*(xm+1)) 2)
Problem 174
Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements.
Solution:
problem_174 = undefined
Problem 175
Fractions involving the number of different ways a number can be expressed as a sum of powers of 2. Solution:
problem_175 = undefined
Problem 176
Rectangular triangles that share a cathetus. Solution:
problem_176 = undefined
Problem 177
Integer angled Quadrilaterals.
Solution:
problem_177 = undefined
Problem 178
Step Numbers Solution:
problem_178 = undefined
Problem 179
Consecutive positive divisors. Solution:
problem_179 = undefined
Problem 180
Solution:
problem_180 = undefined