Euler problems/151 to 160: Difference between revisions
No edit summary |
(change long line to short) |
||
Line 34: | Line 34: | ||
import Data.Ratio | import Data.Ratio | ||
import Data.List | import Data.List | ||
invSq n = 1 % (n * n) | invSq n = 1 % (n * n) | ||
sumInvSq = sum . map invSq | sumInvSq = sum . map invSq | ||
subsets (x:xs) = let s = subsets xs in s ++ map (x :) s | subsets (x:xs) = let s = subsets xs in s ++ map (x :) s | ||
subsets _ = [[]] | subsets _ = [[]] | ||
primes = 2 : 3 : 7 : [p | p <- [11, 13..79], | primes = 2 : 3 : 7 : [p | p <- [11, 13..79], | ||
all (\q -> p `mod` q /= 0) [3, 5, 7]] | all (\q -> p `mod` q /= 0) [3, 5, 7]] | ||
-- All subsets whose sum of inverse squares, | -- All subsets whose sum of inverse squares, | ||
-- when added to x, does not contain a factor of p | -- when added to x, does not contain a factor of p | ||
pfree s x p = [(y, t) | t <- subsets s, let y = x + sumInvSq t, | pfree s x p = [(y, t) | t <- subsets s, let y = x + sumInvSq t, | ||
denominator y `mod` p /= 0] | denominator y `mod` p /= 0] | ||
-- All pairs (x, s) where x is a rational number whose reduced | -- All pairs (x, s) where x is a rational number whose reduced | ||
-- denominator is not divisible by any prime greater than 3; | -- denominator is not divisible by any prime greater than 3; | ||
-- and s is all sets of numbers up to 80 divisible | -- and s is all sets of numbers up to 80 divisible | ||
-- by a prime greater than 3, whose sum of inverse squares is x. | -- by a prime greater than 3, whose sum of inverse squares is x. | ||
only23 = foldl | only23 = foldl fun [(0, [[]])] [13, 7, 5] | ||
where | |||
fun a p = | |||
collect $ [(y, u ++ v) | | |||
(x, s) <- a, | |||
terms p = [n * p | n <- [1..80`div`p], | (y, v) <- pfree (terms p) x p, | ||
u <- s] | |||
terms p = | |||
[n * p | | |||
collect = map (\z -> (fst $ head z, map snd z)) . | n <- [1..80`div`p], | ||
all (\q -> n `mod` q /= 0) $ | |||
11 : takeWhile (>= p) [13, 7, 5] | |||
] | |||
collect = | |||
map (\z -> (fst $ head z, map snd z)) . | |||
groupBy fstEq . sortBy cmpFst | |||
fstEq (x, _) (y, _) = x == y | fstEq (x, _) (y, _) = x == y | ||
cmpFst (x, _) (y, _) = compare x y | cmpFst (x, _) (y, _) = compare x y | ||
-- All subsets (of an ordered set) whose sum of inverse squares is x | -- All subsets (of an ordered set) whose sum of inverse squares is x | ||
findInvSq x y = | findInvSq x y = | ||
fun x $ zip3 y (map invSq y) (map sumInvSq $ init $ tails y) | |||
where | |||
fun 0 _ = [[]] | |||
fun x ((n, r, s):ns) | |||
| r > x = fun x ns | |||
| s < x = [] | |||
| otherwise = map (n :) (fun (x - r) ns) ++ fun x ns | |||
fun _ _ = [] | |||
-- All numbers up to 80 that are divisible only by the primes | -- All numbers up to 80 that are divisible only by the primes | ||
-- 2 and 3 and are not divisible by 32 or 27. | -- 2 and 3 and are not divisible by 32 or 27. | ||
all23 = [n | a <- [0..4], b <- [0..2], let n = 2^a * 3^b, n <= 80] | all23 = [n | a <- [0..4], b <- [0..2], let n = 2^a * 3^b, n <= 80] | ||
solutions = | solutions = | ||
[sort $ u ++ v | | |||
(x, s) <- only23, | |||
u <- findInvSq (1%2 - x) all23, | |||
v <- s | |||
] | |||
problem_152 = length solutions | problem_152 = length solutions | ||
</haskell> | </haskell> | ||
Line 290: | Line 292: | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
-- Call (a,b,p) a primitive tuple of equation 1/a+1/b=p/10^n | |||
-- a and b are divisors of 10^n, gcd a b == 1, a <= b and a*b <= 10^n | |||
-- I noticed that the number of variants with a primitive tuple | |||
-- is equal to the number of divisors of p. | |||
-- So I produced all possible primitive tuples per 10^n and | |||
-- summed all the number of divisors of every p | |||
import Data.List | |||
k `deelt` n = n `mod` k == 0 | |||
delers n | |||
| n == 10 = [1,2,5,10] | |||
| otherwise = | |||
[ d | | |||
d <- [1..n `div` 5], | |||
d `deelt` n ] | |||
++ [n `div` 4, n `div` 2,n] | |||
fp n = | |||
[ n*(a+b) `div` ab | | |||
a <- ds, | |||
b <- dropWhile (<a) ds, | |||
gcd a b == 1, | |||
let ab = a*b, | |||
ab <= n | |||
] | |||
where | |||
ds = delers n | |||
numDivisors :: Integer -> Integer | numDivisors :: Integer -> Integer | ||
numDivisors n = product [ toInteger (a+1) | (p,a) <- primePowerFactors n] | numDivisors n = product [ toInteger (a+1) | (p,a) <- primePowerFactors n] | ||
numVgln = sum . map numDivisors . fp | |||
main = do | |||
print . sum . map numVgln . takeWhile (<=10^9) . iterate (10*) $ 10 | |||
primePowerFactors x = [(head a ,length a)|a<-group$primeFactors x] | |||
merge xs@(x:xt) ys@(y:yt) = case compare x y of | |||
LT -> x : (merge xt ys) | |||
EQ -> x : (merge xt yt) | |||
GT -> y : (merge xs yt) | |||
diff xs@(x:xt) ys@(y:yt) = case compare x y of | |||
LT -> x : (diff xt ys) | |||
EQ -> diff xt yt | |||
GT -> diff xs yt | |||
primes, nonprimes :: [Integer] | |||
primes = [2,3,5] ++ (diff [7,9..] nonprimes) | |||
nonprimes = foldr1 f . map g $ tail primes | |||
where f (x:xt) ys = x : (merge xt ys) | |||
g p = [ n*p | n <- [p,p+2..]] | |||
primeFactors n = | |||
factor n primes | |||
where | |||
factor n (p:ps) | |||
| p*p > n = [n] | |||
| n `mod` p == 0 = p : factor (n `div` p) (p:ps) | |||
| otherwise = factor n ps | |||
</haskell> | </haskell> | ||
Revision as of 03:51, 11 February 2008
Problem 151
Paper sheets of standard sizes: an expected-value problem.
Solution:
problem_151 = fun (1,1,1,1)
fun (0,0,0,1) = 0
fun (0,0,1,0) = fun (0,0,0,1) + 1
fun (0,1,0,0) = fun (0,0,1,1) + 1
fun (1,0,0,0) = fun (0,1,1,1) + 1
fun (a,b,c,d) =
(pickA + pickB + pickC + pickD) / (a + b + c + d)
where
pickA | a > 0 = a * fun (a-1,b+1,c+1,d+1)
| otherwise = 0
pickB | b > 0 = b * fun (a,b-1,c+1,d+1)
| otherwise = 0
pickC | c > 0 = c * fun (a,b,c-1,d+1)
| otherwise = 0
pickD | d > 0 = d * fun (a,b,c,d-1)
| otherwise = 0
Problem 152
Writing 1/2 as a sum of inverse squares
Note that if p is an odd prime, the sum of inverse squares of all terms divisible by p must have reduced denominator not divisible by p.
Solution:
import Data.Ratio
import Data.List
invSq n = 1 % (n * n)
sumInvSq = sum . map invSq
subsets (x:xs) = let s = subsets xs in s ++ map (x :) s
subsets _ = [[]]
primes = 2 : 3 : 7 : [p | p <- [11, 13..79],
all (\q -> p `mod` q /= 0) [3, 5, 7]]
-- All subsets whose sum of inverse squares,
-- when added to x, does not contain a factor of p
pfree s x p = [(y, t) | t <- subsets s, let y = x + sumInvSq t,
denominator y `mod` p /= 0]
-- All pairs (x, s) where x is a rational number whose reduced
-- denominator is not divisible by any prime greater than 3;
-- and s is all sets of numbers up to 80 divisible
-- by a prime greater than 3, whose sum of inverse squares is x.
only23 = foldl fun [(0, [[]])] [13, 7, 5]
where
fun a p =
collect $ [(y, u ++ v) |
(x, s) <- a,
(y, v) <- pfree (terms p) x p,
u <- s]
terms p =
[n * p |
n <- [1..80`div`p],
all (\q -> n `mod` q /= 0) $
11 : takeWhile (>= p) [13, 7, 5]
]
collect =
map (\z -> (fst $ head z, map snd z)) .
groupBy fstEq . sortBy cmpFst
fstEq (x, _) (y, _) = x == y
cmpFst (x, _) (y, _) = compare x y
-- All subsets (of an ordered set) whose sum of inverse squares is x
findInvSq x y =
fun x $ zip3 y (map invSq y) (map sumInvSq $ init $ tails y)
where
fun 0 _ = [[]]
fun x ((n, r, s):ns)
| r > x = fun x ns
| s < x = []
| otherwise = map (n :) (fun (x - r) ns) ++ fun x ns
fun _ _ = []
-- All numbers up to 80 that are divisible only by the primes
-- 2 and 3 and are not divisible by 32 or 27.
all23 = [n | a <- [0..4], b <- [0..2], let n = 2^a * 3^b, n <= 80]
solutions =
[sort $ u ++ v |
(x, s) <- only23,
u <- findInvSq (1%2 - x) all23,
v <- s
]
problem_152 = length solutions
Problem 153
Investigating Gaussian Integers
Solution:
#include <stdio.h>
#include <math.h>
typedef long long lolo;
static const lolo sumTo( lolo n ) { return n * ( n + 1 ) / 2; }
#define LL (1000)
lolo ssTab[ LL ];
int gcd(int a, int b) {
if (b==0) return a;
return gcd(b, a%b);
}
static const lolo sumSigma( lolo n ) {
lolo a, r, s;
if( n == 0 ) return 0;
if( n < LL ) { r = ssTab[ n ]; if( r ) return r; }
s = floor(sqrt( n ));
r = 0;
for( a = 1; a <= s; ++a ) r += a * ( n / a );
for( a = 1; a <= s; ++a ) r += ( sumTo( n / a ) - sumTo ( n / ( a + 1 ) ) ) * a;
if( n / s == s ) r -= s * s;
if( n < LL ) ssTab[ n ] = r;
return r;
}
int main() {
const lolo m = 100000000;
lolo t;
int a, b;
long ab;
t = sumSigma(m);
for( a = 1; a <=floor(sqrt(m)); ++a ) {
for( b = 1; b <= a && a * a + b * b <= m; ++b ) {
ab=(a*a+b*b);
if( ( a | b ) & 1 && gcd( a, b ) == 1 ) {
t += 2 * sumSigma( m / ab) * ( a == b ? a : a + b );
}
}
}
printf( "t = %lld\n", t );
return 1;
}
problem_153 = main
Problem 154
Exploring Pascal's pyramid.
Solution:
#include <stdio.h>
int main(){
int bound = 200000;
long long sum = 0;
int val2[bound+1], val5[bound+1]; // number of factors 2/5 in i!
int v2 = 0, v5 = 0;
int i;
int n;
for(n=0;n<=bound;n++)
{val5[n]=n/5+n/25+n/125+n/625+n/3125+n/15625+n/78125;
val2[n]=n/2+n/4+n/8+n/16+n/32+n/64+n/128+n/256+n/512+n/1024
+n/2048+n/4096+n/8192+n/16384+n/32768+n/65536+n/131072;}
v2 =val2[bound]- 11;
v5 = val5[bound]-11;
int j,k,vi2,vi5;
for(i = 2; i < 65625; i++){
if (!(i&1023)){
// look how many we got so far
printf("%d:\t%lld\n",i,sum);
}
vi5 = val5[i];
vi2 = val2[i];
int jb = ((bound - i) >> 1)+1;
// I want i <= j <= k
// by carry analysis, I know that if i < 4*5^5+2, then
// j must be at least 2*5^6+2
for(j = (i < 12502) ? 31252 : i; j < jb; j++){
k = bound - i - j;
if (vi5 + val5[j] + val5[k] < v5
&& vi2 + val2[j] + val2[k] < v2){
if (j == k || i == j){
sum += 3;
} else {
sum += 6;
}
}
}
}
printf("Total:\t%lld\n",sum);
return 0;
}
problem_154 = main
Problem 155
Counting Capacitor Circuits.
Solution:
--http://www.research.att.com/~njas/sequences/A051389
a051389=
[1, 2, 4, 8, 20, 42,
102, 250, 610, 1486,
3710, 9228, 23050, 57718,
145288, 365820, 922194, 2327914
]
problem_155 = sum a051389
Problem 156
Counting Digits
Solution:
digits =reverse.digits'
where
digits' n
|n<10=[n]
|otherwise= y:digits' x
where
(x,y)=divMod n 10
digitsToNum n=foldl dmm 0 n
where
dmm=(\x y->x*10+y)
countA :: Int -> Integer
countA 0 = 0
countA k = fromIntegral k * (10^(k-1))
countFun :: Integer -> Integer -> Integer
countFun _ 0 = 0
countFun d n = countL ds k
where
ds = digits n
k = length ds - 1
countL [a] _
| a < d = 0
| otherwise = 1
countL (a:tl) m
| a < d = a*countA m + countL tl (m-1)
| a == d = a*countA m + digitsToNum tl + 1 + countL tl (m-1)
| otherwise = a*countA m + 10^m + countL tl (m-1)
fixedPoints :: Integer -> [Integer]
fixedPoints d
= [a*10^10+b | a <- [0 .. d-1], b <- findFrom 0 (10^10-1)]
where
fun = countFun d
good r = r == fun r
findFrom lo hi
| hi < lo = []
| good lo = lgs ++ findFrom (last lgs + 2) hi
| good hi = findFrom lo (last hgs - 2) ++ reverse hgs
| h1 < l1 = []
| l1 == h1 = if good l1 then [l1] else []
| m0 == m1 = findFrom l1 (head mgs - 2) ++ mgs
++ findFrom (last mgs + 2) h1
| m0 < m1 = findFrom l1 (m0-1) ++ findFrom (goUp h1 m1) h1
| otherwise = findFrom l1 (goDown l1 m1) ++ findFrom (m0+1) h1
where
l1 = goUp hi lo
h1 = goDown l1 hi
goUp bd k
| k < k1 && k < bd = goUp bd k1
| otherwise = k
where
k1 = fun k
goDown bd k
| k1 < k && bd < k = goDown bd k1
| otherwise = k
where
k1 = fun k
m0 = (l1 + h1) `div` 2
m1 = fun m0
lgs = takeWhile good [lo .. hi]
hgs = takeWhile good [hi,hi-1 .. lo]
mgs = reverse (takeWhile good [m0,m0-1 .. l1])
++ takeWhile good [m0+1 .. h1]
problem_156=sum[sum $fixedPoints a|a<-[1..9]]
Problem 157
Solving the diophantine equation 1/a+1/b= p/10n
Solution:
-- Call (a,b,p) a primitive tuple of equation 1/a+1/b=p/10^n
-- a and b are divisors of 10^n, gcd a b == 1, a <= b and a*b <= 10^n
-- I noticed that the number of variants with a primitive tuple
-- is equal to the number of divisors of p.
-- So I produced all possible primitive tuples per 10^n and
-- summed all the number of divisors of every p
import Data.List
k `deelt` n = n `mod` k == 0
delers n
| n == 10 = [1,2,5,10]
| otherwise =
[ d |
d <- [1..n `div` 5],
d `deelt` n ]
++ [n `div` 4, n `div` 2,n]
fp n =
[ n*(a+b) `div` ab |
a <- ds,
b <- dropWhile (<a) ds,
gcd a b == 1,
let ab = a*b,
ab <= n
]
where
ds = delers n
numDivisors :: Integer -> Integer
numDivisors n = product [ toInteger (a+1) | (p,a) <- primePowerFactors n]
numVgln = sum . map numDivisors . fp
main = do
print . sum . map numVgln . takeWhile (<=10^9) . iterate (10*) $ 10
primePowerFactors x = [(head a ,length a)|a<-group$primeFactors x]
merge xs@(x:xt) ys@(y:yt) = case compare x y of
LT -> x : (merge xt ys)
EQ -> x : (merge xt yt)
GT -> y : (merge xs yt)
diff xs@(x:xt) ys@(y:yt) = case compare x y of
LT -> x : (diff xt ys)
EQ -> diff xt yt
GT -> diff xs yt
primes, nonprimes :: [Integer]
primes = [2,3,5] ++ (diff [7,9..] nonprimes)
nonprimes = foldr1 f . map g $ tail primes
where f (x:xt) ys = x : (merge xt ys)
g p = [ n*p | n <- [p,p+2..]]
primeFactors n =
factor n primes
where
factor n (p:ps)
| p*p > n = [n]
| n `mod` p == 0 = p : factor (n `div` p) (p:ps)
| otherwise = factor n ps
Problem 158
Exploring strings for which only one character comes lexicographically after its neighbour to the left.
Solution:
factorial n = product [1..toInteger n]
fallingFactorial x n = product [x - fromInteger i | i <- [0..toInteger n - 1] ]
choose n k = fallingFactorial n k `div` factorial k
fun n=(2 ^ n - n - 1) * choose 26 n
problem_158=maximum$map fun [1..26]
Problem 159
Digital root sums of factorisations.
Solution:
import Control.Monad
import Data.Array.ST
import qualified Data.Array.Unboxed as U
spfArray :: U.UArray Int Int
spfArray = runSTUArray (do
arr <- newArray (0,m-1) 0
loop arr 2
forM_ [2 .. m - 1] $ \ x ->
loop2 arr x 2
return arr
)
where
m=10^6
loop arr n
|n>=m=return ()
|otherwise=do writeArray arr n (n-9*(div (n-1) 9))
loop arr (n+1)
loop2 arr x n
|n*x>=m=return ()
|otherwise=do incArray arr x n
loop2 arr x (n+1)
incArray arr x n = do
a <- readArray arr x
b <- readArray arr n
ab <- readArray arr (x*n)
when(ab<a+b) (writeArray arr (x*n) (a + b))
writ x=appendFile "p159.log"$foldl (++) "" [show x,"\n"]
main=do
mapM_ writ $U.elems spfArray
problem_159 = main
--at first ,make main to get file "p159.log"
--then ,add all num in the file
Problem 160
Factorial trailing digits
We use the following two facts:
Fact 1: (2^(d + 4*5^(d-1)) - 2^d) `mod` 10^d == 0
Fact 2: product [n | n <- [0..10^d], gcd n 10 == 1] `mod` 10^d == 1
We really only need these two facts for the special case of
d == 5
, and we can verify that directly by
evaluating the above two Haskell expressions.
More generally:
Fact 1 follows from the fact that the group of invertible elements
of the ring of integers modulo 5^d
has
4*5^(d-1)
elements.
Fact 2 follows from the fact that the group of invertible elements
of the ring of integers modulo 10^d
is isomorphic to the product
of a cyclic group of order 2 and another cyclic group.
Solution:
problem_160 = trailingFactorialDigits 5 (10^12)
trailingFactorialDigits d n = twos `times` odds
where
base = 10 ^ d
x `times` y = (x * y) `mod` base
multiply = foldl' times 1
x `toPower` k = multiply $ genericReplicate n x
e = facFactors 2 n - facFactors 5 n
twos
| e <= d = 2 `toPower` e
| otherwise = 2 `toPower` (d + (e - d) `mod` (4 * 5 ^ (d - 1)))
odds = multiply [odd | a <- takeWhile (<= n) $ iterate (* 2) 1,
b <- takeWhile (<= n) $ iterate (* 5) a,
odd <- [3, 5 .. n `div` b `mod` base],
odd `mod` 5 /= 0]
-- The number of factors of the prime p in n!
facFactors p = sum . zipWith (*) (iterate (\x -> p * x + 1) 1) .
tail . radix p
-- The digits of n in base b representation
radix p = map snd . takeWhile (/= (0, 0)) .
iterate ((`divMod` p) . fst) . (`divMod` p)
it have another fast way to do this .
Solution:
import Data.List
mulMod :: Integral a => a -> a -> a -> a
mulMod a b c= (b * c) `rem` a
squareMod :: Integral a => a -> a -> a
squareMod a b = (b * b) `rem` a
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a
pow' _ _ _ 0 = 1
pow' mul sq x' n' = f x' n' 1
where
f x n y
| n == 1 = x `mul` y
| r == 0 = f x2 q y
| otherwise = f x2 q (x `mul` y)
where
(q,r) = quotRem n 2
x2 = sq x
powMod :: Integral a => a -> a -> a -> a
powMod m = pow' (mulMod m) (squareMod m)
productMod =foldl (mulMod (10^5)) 1
hFacial 0=1
hFacial a
|gcd a 5==1=mod (a*hFacial(a-1)) (5^5)
|otherwise=hFacial(a-1)
fastFacial a= hFacial $mod a 6250
numPrime x p=takeWhile(>0) [div x (p^a)|a<-[1..]]
p160 x=mulMod t5 a b
where
t5=10^5
lst=numPrime x 5
a=powMod t5 1563 $mod c 2500
b=productMod c6
c=sum lst
c6=map fastFacial $x:lst
problem_160 = p160 (10^12)