Euler problems/21 to 30: Difference between revisions

From HaskellWiki
No edit summary
No edit summary
Line 15: Line 15:
import Data.List
import Data.List
import Data.Char
import Data.Char
problem_22 = do
problem_22 =
     input <- readFile "names.txt"
     do input <- readFile "names.txt"
    let names = sort $ read$"["++ input++"]"
      let names = sort $ read$"["++ input++"]"
    let scores = zipWith score names [1..]
      let scores = zipWith score names [1..]
    print $ show $ sum $ scores
      print . show . sum $ scores
    where
  where score w i = (i *) . sum . map (\c -> ord c - ord 'A' + 1) $ w
    score w i = (i *) $ sum $ map (\c -> ord c - ord 'A' + 1) w
</haskell>
</haskell>


Line 39: Line 38:
isSum = any (abunds_array !) . rests
isSum = any (abunds_array !) . rests


problem_23 = putStrLn $ show $ foldl1 (+) $ filter (not . isSum) [1..n]  
problem_23 = putStrLn . show . foldl1 (+) . filter (not . isSum) $ [1..n]  
</haskell>
</haskell>


Line 52: Line 51:
fac n = n * fac (n - 1)
fac n = n * fac (n - 1)
perms [] _= []
perms [] _= []
perms xs n=
perms xs n= x : perms (delete x xs) (mod n m)
    x:( perms ( delete x $ xs ) (mod n m))
  where m = fac $ length xs - 1
    where
        y = div n m
    m=fac$(length(xs) -1)
        x = xs!!y
    y=div n m
    x = xs!!y
   
   
problem_24 = perms "0123456789" 999999
problem_24 = perms "0123456789" 999999
</haskell>
</haskell>


Line 69: Line 66:
import Data.List
import Data.List
fib x
fib x
    |x==0=0
  | x==0     = 0
    |x==1=1
  | x==1     = 1
    |x==2=1
  | odd x    = (fib (d+1))^2 + (fib d)^2
     |odd x=(fib (d+1))^2+(fib d)^2
  | otherwise = (fib (d+1))^2-(fib (d-1))^2
    |otherwise=(fib (d+1))^2-(fib (d-1))^2
where d = x `div` 2
    where
    d=div x 2


phi=(1+sqrt 5)/2
phi = (1+sqrt 5)/2
dig x=floor( (fromInteger x-1) * log 10 /log phi)
 
problem_25 =  
dig x = floor ((fromInteger x-1) * log 10 / log phi)
    head[a|a<-[dig num..],(>=limit)$fib a]
 
    where
problem_25 = head [a | a<-[dig num..], fib a >= limit]
    num=1000
  where num   = 1000
    limit=10^(num-1)
        limit = 10^(num-1)
</haskell>
</haskell>


Line 91: Line 86:
Solution:
Solution:
<haskell>
<haskell>
problem_26 = head [a|a<-[999,997..],all id [isPrime a ,isPrime$div a 2]]
problem_26 = head [a | a<-[999,997..], and [isPrime a, isPrime $ a `div` 2]]
</haskell>
</haskell>


Line 99: Line 94:
Solution:
Solution:
<haskell>
<haskell>
problem_27=
problem_27 = -(2*a-1)*(a^2-a+41)
    negate (2*a-1)*(a^2-a+41)
  where n = 1000
    where
        m = head $ filter (\x->x^2-x+41>n) [1..]
    n=1000
        a = m-1
    m=head $filter (\x->x^2-x+41>n)[1..]
    a=m-1
</haskell>
</haskell>



Revision as of 19:25, 19 February 2008

Problem 21

Evaluate the sum of all amicable pairs under 10000.

Solution:

--http://www.research.att.com/~njas/sequences/A063990
problem_21 = sum [220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368]

Problem 22

What is the total of all the name scores in the file of first names?

Solution:

import Data.List
import Data.Char
problem_22 =
    do input <- readFile "names.txt"
       let names = sort $ read$"["++ input++"]"
       let scores = zipWith score names [1..]
       print . show . sum $ scores
  where score w i = (i *) . sum . map (\c -> ord c - ord 'A' + 1) $ w

Problem 23

Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.

Solution:

--http://www.research.att.com/~njas/sequences/A048242
import Data.Array 
n = 28124
abundant n = eulerTotient n - n > n
abunds_array = listArray (1,n) $ map abundant [1..n]
abunds = filter (abunds_array !) [1..n]

rests x = map (x-) $ takeWhile (<= x `div` 2) abunds
isSum = any (abunds_array !) . rests

problem_23 = putStrLn . show . foldl1 (+) . filter (not . isSum) $ [1..n]

Problem 24

What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?

Solution:

import Data.List 
 
fac 0 = 1
fac n = n * fac (n - 1)
perms [] _= []
perms xs n= x : perms (delete x xs) (mod n m)
  where m = fac $ length xs - 1
        y = div n m
        x = xs!!y
 
problem_24 = perms "0123456789" 999999

Problem 25

What is the first term in the Fibonacci sequence to contain 1000 digits?

Solution:

import Data.List
fib x
  | x==0      = 0
  | x==1      = 1
  | odd x     = (fib (d+1))^2 + (fib d)^2
  | otherwise = (fib (d+1))^2-(fib (d-1))^2
 where d = x `div` 2

phi = (1+sqrt 5)/2

dig x = floor ((fromInteger x-1) * log 10 / log phi)

problem_25 = head [a | a<-[dig num..], fib a >= limit]
  where num   = 1000
        limit = 10^(num-1)

Problem 26

Find the value of d < 1000 for which 1/d contains the longest recurring cycle.

Solution:

problem_26 = head [a | a<-[999,997..], and [isPrime a, isPrime $ a `div` 2]]

Problem 27

Find a quadratic formula that produces the maximum number of primes for consecutive values of n.

Solution:

problem_27 = -(2*a-1)*(a^2-a+41)
  where n = 1000
        m = head $ filter (\x->x^2-x+41>n) [1..]
        a = m-1

Problem 28

What is the sum of both diagonals in a 1001 by 1001 spiral?

Solution:

problem_28 = sum (map (\n -> 4*(n-2)^2+10*(n-1)) [3,5..1001]) + 1

Problem 29

How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?

Solution:

import Control.Monad
problem_29 = length . group . sort $ liftM2 (^) [2..100] [2..100]

Problem 30

Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.

Solution:

--http://www.research.att.com/~njas/sequences/A052464
problem_30 = sum [4150, 4151, 54748, 92727, 93084, 194979]