Euler problems/21 to 30: Difference between revisions
(→Problem 25: restore old solution to problem 25 to avoid gratuitous complexity) |
Henrylaxen (talk | contribs) No edit summary |
||
Line 113: | Line 113: | ||
--http://www.research.att.com/~njas/sequences/A052464 | --http://www.research.att.com/~njas/sequences/A052464 | ||
problem_30 = sum [4150, 4151, 54748, 92727, 93084, 194979] | problem_30 = sum [4150, 4151, 54748, 92727, 93084, 194979] | ||
</haskell> | |||
I'm sorry, but I find the solution to problem 30 very unsatisfying. I'm using the Euler problems to learn Haskell, so looking up the answer and adding the terms isn't really that helpful. I would like to present the following as a clearer solution that perhaps gives a little more insight into the problem and programming in Haskell. -- Henry Laxen, Feb 20, 2008 | |||
<haskell> | |||
problem_30 = sum $ map listToInt (drop 2 ans) | |||
-- we drop 2 because the first two members of the ans are 0 and 1, | |||
-- which are considered "trivial" solutions and should not count in the sum | |||
where maxFirstDigit = (6*9^5 `div` 10^5) + 1 | |||
-- The largest number that can be the sum of fifth powers | |||
-- is 6*9^5 = 354294, which has 6 digits | |||
listToInt n = foldl (\x y -> 10*x+y) 0 n | |||
isSumOfPowers p n = (sum $ map (\x -> x^p) n) == listToInt n | |||
ans = filter (isSumOfPowers 5) [ [a,b,c,d,e,f] | | |||
a <- [0..maxFirstDigit], | |||
b <- [0..9], | |||
c <- [0..9], | |||
d <- [0..9], | |||
e <- [0..9], | |||
f <- [0..9] ] | |||
</haskell> | </haskell> |
Revision as of 19:30, 20 February 2008
Problem 21
Evaluate the sum of all amicable pairs under 10000.
Solution:
--http://www.research.att.com/~njas/sequences/A063990
problem_21 = sum [220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368]
Problem 22
What is the total of all the name scores in the file of first names?
Solution:
import Data.List
import Data.Char
problem_22 =
do input <- readFile "names.txt"
let names = sort $ read$"["++ input++"]"
let scores = zipWith score names [1..]
print . show . sum $ scores
where score w i = (i *) . sum . map (\c -> ord c - ord 'A' + 1) $ w
Problem 23
Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
Solution:
--http://www.research.att.com/~njas/sequences/A048242
import Data.Array
n = 28124
abundant n = eulerTotient n - n > n
abunds_array = listArray (1,n) $ map abundant [1..n]
abunds = filter (abunds_array !) [1..n]
rests x = map (x-) $ takeWhile (<= x `div` 2) abunds
isSum = any (abunds_array !) . rests
problem_23 = putStrLn . show . foldl1 (+) . filter (not . isSum) $ [1..n]
Problem 24
What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
Solution:
import Data.List
fac 0 = 1
fac n = n * fac (n - 1)
perms [] _= []
perms xs n= x : perms (delete x xs) (mod n m)
where m = fac $ length xs - 1
y = div n m
x = xs!!y
problem_24 = perms "0123456789" 999999
Problem 25
What is the first term in the Fibonacci sequence to contain 1000 digits?
Solution:
valid ( i, n ) = length ( show n ) == 1000
problem_25 = fst . head . filter valid . zip [ 1 .. ] $ fibs
where fibs = 1 : 1 : 2 : zipWith (+) fibs ( tail fibs )
Problem 26
Find the value of d < 1000 for which 1/d contains the longest recurring cycle.
Solution:
problem_26 = head [a | a<-[999,997..], and [isPrime a, isPrime $ a `div` 2]]
Problem 27
Find a quadratic formula that produces the maximum number of primes for consecutive values of n.
Solution:
problem_27 = -(2*a-1)*(a^2-a+41)
where n = 1000
m = head $ filter (\x->x^2-x+41>n) [1..]
a = m-1
Problem 28
What is the sum of both diagonals in a 1001 by 1001 spiral?
Solution:
problem_28 = sum (map (\n -> 4*(n-2)^2+10*(n-1)) [3,5..1001]) + 1
Problem 29
How many distinct terms are in the sequence generated by ab for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?
Solution:
import Control.Monad
problem_29 = length . group . sort $ liftM2 (^) [2..100] [2..100]
Problem 30
Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.
Solution:
--http://www.research.att.com/~njas/sequences/A052464
problem_30 = sum [4150, 4151, 54748, 92727, 93084, 194979]
I'm sorry, but I find the solution to problem 30 very unsatisfying. I'm using the Euler problems to learn Haskell, so looking up the answer and adding the terms isn't really that helpful. I would like to present the following as a clearer solution that perhaps gives a little more insight into the problem and programming in Haskell. -- Henry Laxen, Feb 20, 2008
problem_30 = sum $ map listToInt (drop 2 ans)
-- we drop 2 because the first two members of the ans are 0 and 1,
-- which are considered "trivial" solutions and should not count in the sum
where maxFirstDigit = (6*9^5 `div` 10^5) + 1
-- The largest number that can be the sum of fifth powers
-- is 6*9^5 = 354294, which has 6 digits
listToInt n = foldl (\x y -> 10*x+y) 0 n
isSumOfPowers p n = (sum $ map (\x -> x^p) n) == listToInt n
ans = filter (isSumOfPowers 5) [ [a,b,c,d,e,f] |
a <- [0..maxFirstDigit],
b <- [0..9],
c <- [0..9],
d <- [0..9],
e <- [0..9],
f <- [0..9] ]