Lojban: Difference between revisions
EndreyMark (talk | contribs) m (Two personal pronouns mixed) |
EndreyMark (talk | contribs) (→Repeating: Useing combinator W_(2), the deferred version of elementary duplicator W) |
||
Line 32: | Line 32: | ||
A little vocabulary: | A little vocabulary: | ||
; mi | ; <code>mi</code> | ||
: I | : I | ||
; vecnu | ; <code>vecnu</code> | ||
: sell | : sell | ||
; do | ; <code>do</code> | ||
: you | : you | ||
; ta | ; <code>ta</code> | ||
: that | : that | ||
Line 45: | Line 45: | ||
{| border=5 | {| border=5 | ||
|+ I sell this to you for some price. | |+ I sell this to you for some price. | ||
| mi | | <code>mi</code> | ||
| rowspan=2 | cu | | rowspan=2 | <code>cu</code> | ||
| vecnu | | <code>vecnu</code> | ||
| ta | | <code>ta</code> | ||
| do | | <code>do</code> | ||
| zo'e | | <code>zo'e</code> | ||
| rowspan=2 | vau | | rowspan=2 | <code>vau</code> | ||
|- | |- | ||
| <math>x_1</math> | | <math>x_1</math> | ||
Line 60: | Line 60: | ||
|} | |} | ||
cu and vau are separators (and they are optional). | <code>cu</code> and <code>vau</code> are separators (and they are optional). | ||
zo'e is only a place-keeper: the argument whose place is fiiled in by it is not specified. | <code>zo'e</code> is only a place-keeper: the argument whose place is fiiled in by it is not specified. | ||
== Filipping == | == Filipping == | ||
Line 67: | Line 67: | ||
{| border=5 | {| border=5 | ||
|+ That is sold by you to me for some price | |+ That is sold by you to me for some price | ||
| ta | | <code>ta</code> | ||
| rowspan=2 | cu | | rowspan=2 | <code>cu</code> | ||
| se vecnu | | <code>se vecnu</code> | ||
| do | | <code>do</code> | ||
| mi | | <code>mi</code> | ||
| zo'e | | <code>zo'e</code> | ||
| rowspan=2 | vau | | rowspan=2 | <code>vau</code> | ||
|- | |- | ||
| <math>x_1</math> | | <math>x_1</math> | ||
Line 82: | Line 82: | ||
|} | |} | ||
Coparing vecnu and se vecnu, it is of taste <math>mathbf C</math> combinator of [[combinatory logic]]. | Coparing <code>vecnu</code> and <code>se vecnu</code>, it is of taste <math>\mathbf C</math> combinator of [[combinatory logic]]. | ||
Comparing structure: | Comparing structure: | ||
{| border=5 | {| border=5 | ||
! <math>x_1</math> | ! <math>x_1</math> | ||
| rowspan=3 | cu | | rowspan=3 | <code>cu</code> | ||
! predicate | ! predicate | ||
! <math>x_2</math> | ! <math>x_2</math> | ||
! <math>x_3</math> | ! <math>x_3</math> | ||
! <math>x_4</math> | ! <math>x_4</math> | ||
| rowspan=3 | vau | | rowspan=3 | <code>vau</code> | ||
|- | |- | ||
| do | | <code>do</code> | ||
| vecnu | | <code>vecnu</code> | ||
| ta | | <code>ta</code> | ||
| rowspan=2 | mi | | rowspan=2 | <code>mi</code> | ||
| rowspan=2 | zo'e | | rowspan=2 | <code>zo'e</code> | ||
|- | |- | ||
| ta | | <code>ta</code> | ||
| se vecnu | | <code>se vecnu</code> | ||
| mi | | <code>mi</code> | ||
|} | |} | ||
== Repeating == | == Repeating == | ||
Words mi, do correspond to | Words <code>mi</code>, <code>do</code> correspond to English personal pronouns I (me), you. Lojban has other similar words, e.g. <code>ri</code>. Word <code>ri</code> can be regarded as an argument (of the predicate) which repeats the previous argument. | ||
{| border=5 | {| border=5 | ||
Line 124: | Line 124: | ||
A little vocabulary: | A little vocabulary: | ||
; mi | ; <code>mi</code> | ||
: I | : I | ||
; tavla | ; <code>tavla</code> | ||
: talk | : talk | ||
; do | ; <code>do</code> | ||
: you | : you | ||
; la lojban. | ; <code>la lojban.</code> | ||
: Lojban | : Lojban | ||
Line 137: | Line 137: | ||
{| border=5 | {| border=5 | ||
|+ I talk to you about the Lojban language in Lojban | |+ I talk to you about the Lojban language in Lojban | ||
| mi | | <code>mi</code> | ||
| rowspan=2 | cu | | rowspan=2 | <code>cu</code> | ||
| tavla | | <code>tavla</code> | ||
| do | | <code>do</code> | ||
| la lojban. | | <code>la lojban.</code> | ||
| la lojban. | | <code>la lojban.</code> | ||
| rowspan=2 | vau | | rowspan=2 | <code>vau</code> | ||
|- | |- | ||
| <math>x_1</math> | | <math>x_1</math> | ||
Line 152: | Line 152: | ||
|} | |} | ||
The word ri helps us avoiding repeating the argument of predicate in this case: | The word <code>ri</code> helps us avoiding repeating the argument of predicate in this case: | ||
<code>mi cu tavla do la lojban. ri vau</code> | |||
I think, it is more imperative solution, | I think, it is more imperative solution, than the <math>\mathbf W</math> combinator of [[combinatory logic]], but in this case, it has the same effect. If Lojban used combinators, I should write (using the elementary duplicator <math>\mathbf W</math>): | ||
<math>\mathbf W</math>( | <math>\mathbf W</math>(<code>mi cu tavla do</code>) <code>la lojban.</code> | ||
<math>\mathbf | Deferred combinator <math>\mathbf W_{\left(2\right)}</math> helps us even more here: | ||
I talk. | <code>mi cu</code> (<math>\mathbf W_{\left(2\right)}</math> <code>tavla</code>) <code>do la lojban.</code> | ||
<math>\mathbf W</math>-sequences could be used also for avoiding the many-many repeating zo'e words (of course, if Lojban used combinators): | |||
I talk. | |||
(Not specified, to whom, about what topic, in what language!) | (Not specified, to whom, about what topic, in what language!) | ||
mi cu tavla zo'e zo'e zo'e vau | <code>mi cu tavla zo'e zo'e zo'e vau</code> | ||
What could help us in lambda calculus? | What could help us in lambda calculus? | ||
:<math>\lambda f x . f x x x</math> | :<math>\lambda f x . f x x x</math> | ||
mi cu (<math>\left(\lambda f x . f x x x\right)</math> tavla) zo'e vau | <code>mi cu</code> (<math>\left(\lambda f x . f x x x\right)</math> <code>tavla</code>) <code>zo'e vau</code> | ||
In combinatory logic, <math>\mathbf W^2</math> makes that: | In [[combinatory logic]], <math>\mathbf W^2</math> makes that: | ||
mi cu (<math>\mathbf W^2</math> tavla) zo'e vau | <code>mi cu</code> (<math>\mathbf W^2</math> <code>tavla</code>) <code>zo'e vau</code> | ||
Lojban does not use combinators this way, it uses also rather imperative solutions. Despite of that, Lojban makes me think of [[combinatory logic]] and [[Libraries and tools/Linguistics/Applicative universal grammar|applicative universal grammar]]. | Lojban does not use combinators this way, it uses also rather imperative solutions. Despite of that, Lojban makes me think of [[combinatory logic]] and [[Libraries and tools/Linguistics/Applicative universal grammar|applicative universal grammar]]. |
Revision as of 20:39, 7 August 2006
Introduction
Lojban is a constructed language. “Lojban was not designed primarily to be an international language, however, but rather as a linguistic tool for studying and understanding language. Its linguistic and computer applications make Lojban unique among international languages...” (NC:LojPer, page 15 par 1) -- the entire book is available also online, see the very bottom of the linked page.
It is an artificial language (and, unlike the more a posteriori Esperanto, it is rather of an a priori taste (Moo:LojPer)). It is a human language, capable of expressing everything. Its grammar uses (among others) things taken from mathematical logic, e.g. predicate-like structures. Although its does not make use combinatory logic directly (even, from a category logic / functional programming point of view, it uses also rather imperative ideas), but it may give hints and analogies, how combinatry logic can be useful in linguistics. I like searching Lojban examples illustrating the learned statements when learning about applicative universal grammar.
See its official homepage here.
Analogies of combinatory logic combinators
The Lojban sentence examples are taken from (NC:WhLoj, Chapter 3. Diagrammed Summary of Lojban Grammar). Sometimes, I modified the sentences slightly, if the combinatory logic analogies made it necessary.
Predicates
Somebody | sells | something | to sombebody | for some price |
predicate |
A little vocabulary:
mi
- I
vecnu
- sell
do
- you
ta
- that
Syntax:
mi
|
cu
|
vecnu
|
ta
|
do
|
zo'e
|
vau
|
predicate |
cu
and vau
are separators (and they are optional).
zo'e
is only a place-keeper: the argument whose place is fiiled in by it is not specified.
Filipping
ta
|
cu
|
se vecnu
|
do
|
mi
|
zo'e
|
vau
|
predicate |
Coparing vecnu
and se vecnu
, it is of taste combinator of combinatory logic.
Comparing structure:
cu
|
predicate | vau
| ||||
---|---|---|---|---|---|---|
do
|
vecnu
|
ta
|
mi
|
zo'e
| ||
ta
|
se vecnu
|
mi
|
Repeating
Words mi
, do
correspond to English personal pronouns I (me), you. Lojban has other similar words, e.g. ri
. Word ri
can be regarded as an argument (of the predicate) which repeats the previous argument.
Somebody | talks | to sombebody | about something | in some language |
predicate |
A little vocabulary:
mi
- I
tavla
- talk
do
- you
la lojban.
- Lojban
Syntax:
mi
|
cu
|
tavla
|
do
|
la lojban.
|
la lojban.
|
vau
|
predicate |
The word ri
helps us avoiding repeating the argument of predicate in this case:
mi cu tavla do la lojban. ri vau
I think, it is more imperative solution, than the combinator of combinatory logic, but in this case, it has the same effect. If Lojban used combinators, I should write (using the elementary duplicator ):
(mi cu tavla do
) la lojban.
Deferred combinator helps us even more here:
mi cu
( tavla
) do la lojban.
-sequences could be used also for avoiding the many-many repeating zo'e words (of course, if Lojban used combinators):
I talk.
(Not specified, to whom, about what topic, in what language!)
mi cu tavla zo'e zo'e zo'e vau
What could help us in lambda calculus?
mi cu
( tavla
) zo'e vau
In combinatory logic, makes that:
mi cu
( tavla
) zo'e vau
Lojban does not use combinators this way, it uses also rather imperative solutions. Despite of that, Lojban makes me think of combinatory logic and applicative universal grammar.
References
- NC:WhLoj
- Nicholas, Nick and Cowan, John (ed.): What is Lojban? Logical Language Group, 2003. Available also online, see the very bottom of the linked page.
- Moo:LojPer
- Todd Moody: Lojban in Perspective. Available from here, part of Lojban's official homepage