User:WillNess: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
I like ''[http://ideone.com/qpnqe this one-liner]'': | |||
<haskell> | <haskell> | ||
-- infinite folding | -- infinite folding due to Richard Bird | ||
-- double staged production | -- double staged primes production due to Melissa O'Neill | ||
-- tree folding idea | -- tree folding idea Heinrich Apfelmus / Dave Bayer | ||
primes = 2 : _Y ((3:) . gaps 5 | primes = 2 : _Y ((3:) . gaps 5 | ||
. foldi (\(x:xs) -> (x:) . union xs) [] | . foldi (\(x:xs) -> (x:) . union xs) [] | ||
. map (\p-> [p*p, p*p+2*p..])) | . map (\p-> [p*p, p*p+2*p..])) | ||
_Y g = g (_Y g) -- multistage production | _Y g = g (_Y g) -- multistage production via Y combinator | ||
gaps k s@(c:t) -- == minus [k,k+2..] (c:t), k<=c, | gaps k s@(c:t) -- == minus [k,k+2..] (c:t), k<=c, | ||
Line 23: | Line 22: | ||
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math> | ::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math> | ||
using standard definition | using standard definition | ||
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math>   . . . or,  <math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> | ::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math>   . . . or,  <math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> . | ||
Trial division sieve is: | Trial division sieve is: |
Revision as of 11:45, 8 April 2015
I like this one-liner:
-- infinite folding due to Richard Bird
-- double staged primes production due to Melissa O'Neill
-- tree folding idea Heinrich Apfelmus / Dave Bayer
primes = 2 : _Y ((3:) . gaps 5
. foldi (\(x:xs) -> (x:) . union xs) []
. map (\p-> [p*p, p*p+2*p..]))
_Y g = g (_Y g) -- multistage production via Y combinator
gaps k s@(c:t) -- == minus [k,k+2..] (c:t), k<=c,
| k < c = k : gaps (k+2) s -- fused for better performance
| otherwise = gaps (k+2) t -- k==c
foldi
is on Tree-like folds page. union
and more at Prime numbers.
The constructive definition of primes is the Sieve of Eratosthenes:
using standard definition
- . . . or, .
Trial division sieve is:
If you're put off by self-referentiality, just replace or on the right-hand side of equations with , but even ancient Greeks knew better.