User:WillNess: Difference between revisions

From HaskellWiki
No edit summary
mNo edit summary
Line 1: Line 1:
A perpetual Haskell newbie. I like ''[http://ideone.com/qpnqe this one-liner]'':
I like ''[http://ideone.com/qpnqe this one-liner]'':


<haskell>
<haskell>
--  infinite folding idea due to Richard Bird
--  infinite folding due to Richard Bird
--  double staged production idea due to Melissa O'Neill
--  double staged primes production due to Melissa O'Neill
--  tree folding idea Dave Bayer / improved tree structure
--  tree folding idea Heinrich Apfelmus / Dave Bayer
--    Heinrich Apfelmus / simplified formulation Will Ness
primes = 2 : _Y ((3:) . gaps 5   
primes = 2 : _Y ((3:) . gaps 5   
                       . foldi (\(x:xs) -> (x:) . union xs) []
                       . foldi (\(x:xs) -> (x:) . union xs) []
                       . map (\p-> [p*p, p*p+2*p..]))  
                       . map (\p-> [p*p, p*p+2*p..]))  


_Y g = g (_Y g)  -- multistage production
_Y g = g (_Y g)  -- multistage production via Y combinator


gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
Line 23: Line 22:
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>  
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>  
using standard definition
using standard definition
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> .


Trial division sieve is:
Trial division sieve is:

Revision as of 11:45, 8 April 2015

I like this one-liner:

--   infinite folding due to Richard Bird
--   double staged primes production due to Melissa O'Neill
--   tree folding idea Heinrich Apfelmus / Dave Bayer 
primes = 2 : _Y ((3:) . gaps 5  
                      . foldi (\(x:xs) -> (x:) . union xs) []
                      . map (\p-> [p*p, p*p+2*p..])) 

_Y g = g (_Y g)  -- multistage production via Y combinator

gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
   | k < c     = k : gaps (k+2) s     --     fused for better performance
   | otherwise =     gaps (k+2) t     -- k==c

foldi is on Tree-like folds page. union and more at Prime numbers.

The constructive definition of primes is the Sieve of Eratosthenes:

S=N2pS{pq:qNp}

using standard definition

Nk={nN:nk}   . . . or,  Nk={k}Nk+1 .

Trial division sieve is:

T={nN2:(pT)(2pn¬(pn))}

If you're put off by self-referentiality, just replace S or T on the right-hand side of equations with N2, but even ancient Greeks knew better.