Haskell Quiz/Bytecode Compiler: Difference between revisions
(Corrected fromBytes to handle negative numbers. Added tests for negative numbers.) |
(Added a link to my solution, and the Ruby wrapper for the haskell solution) |
||
Line 31: | Line 31: | ||
where assert str val = print ((if (interpret [] $ f str) == val then "Passed: " else "Failed: ") ++ str)</haskell> | where assert str val = print ((if (interpret [] $ f str) == val then "Passed: " else "Failed: ") ++ str)</haskell> | ||
Or you can use the original Ruby test suite via this Ruby wrapper for your Haskell solution: | |||
<code> | |||
class Compiler | |||
def Compiler.compile(arith) | |||
result = `runghc compiler.hs #{arith}` | |||
eval (result.strip.delete '"') | |||
end | |||
end | |||
</code> | |||
==Solutions== | ==Solutions== | ||
Line 36: | Line 47: | ||
* [[Haskell Quiz/Bytecode Compiler/Solution Justin Bailey|Justin Bailey]] | * [[Haskell Quiz/Bytecode Compiler/Solution Justin Bailey|Justin Bailey]] | ||
* [[Haskell Quiz/Bytecode Compiler/Solution Pepe Iborra |Pepe Iborra]] | |||
* A (non-monadic) solution to the parsing and eval part of this quiz is a [http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/Code/Parsing/Parsing.hs case study] in Chapter 17 of [http://www.cs.kent.ac.uk/people/staff/sjt/craft2e The Craft of Functional Programming] by Simon Thompson. | * A (non-monadic) solution to the parsing and eval part of this quiz is a [http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/Code/Parsing/Parsing.hs case study] in Chapter 17 of [http://www.cs.kent.ac.uk/people/staff/sjt/craft2e The Craft of Functional Programming] by Simon Thompson. |
Revision as of 18:35, 10 November 2006
The Problem
Create a bytecode compiler as described on this ruby quiz page: http://www.rubyquiz.com/quiz100.html
Use this tester by Michael Sloan:
fromBytes n xs =
let int16 = (fromIntegral ((fromIntegral int32) :: Int16)) :: Int
int32 = byte xs
byte xs = foldl (\accum byte -> (accum `shiftL` 8) .|. (byte)) (head xs) (take (n - 1) (tail xs))
in
if n == 2
then int16
else int32
interpret [] [] = error "no result produced"
interpret (s1:s) [] = s1
interpret s (o:xs) | o < 10 = interpret ((fromBytes (o*2) xs):s) (drop (o*2) xs)
interpret (s1:s2:s) (o:xs)
| o == 16 = interpret (s2:s1:s) xs
| otherwise = interpret (((case o of 10 -> (+); 11 -> (-); 12 -> (*); 13 -> (^); 14 -> div; 15 -> mod) s2 s1):s) xs
test :: (String -> [Int]) -> IO ()
test f = assert "2+5" 7 >> assert "2-1" 1 >> assert "2*12" 24 >> assert "2^3" 8 >> assert "5/2" 2 >> assert "15%4" 3 >>
assert "2+2+2" 6 >> assert "2^8/4" 64 >> assert "3*11%3" 0 >>
assert "2*(3+4)" 14 >> assert "(3/3)+(8-2)" 7 >> assert "(1+3)/(2/2)*(10-8)" 8 >> assert "(10%3)*(2+2)" 4 >>
assert "(10/(2+3)*4)" 8 >> assert "5+((5*4)%(2+1))" 7 >> assert "-(2-3-5)" 6 >> assert "-1*-1" (1) >>
assert "1*-1" (-1) >> assert "1*-1" (-1) >> assert "-1*1" (-1) >>
assert "-1" (-1)
where assert str val = print ((if (interpret [] $ f str) == val then "Passed: " else "Failed: ") ++ str)
Or you can use the original Ruby test suite via this Ruby wrapper for your Haskell solution:
class Compiler
def Compiler.compile(arith)
result = `runghc compiler.hs #{arith}`
eval (result.strip.delete '"')
end
end
Solutions
- A (non-monadic) solution to the parsing and eval part of this quiz is a case study in Chapter 17 of The Craft of Functional Programming by Simon Thompson.