99 questions/54A to 60: Difference between revisions
m (Formatting bug) |
RossPaterson (talk | contribs) (fix source) |
||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
These are Haskell translations of [http://www. | These are Haskell translations of [http://www.hta-bi.bfh.ch/~hew/informatik3/prolog/p-99/ Ninety-Nine Prolog Problems]. | ||
If you want to work on one of these, put your name in the block so we know someone's working on it. Then, change n in your block to the appropriate problem number, and fill in the <Problem description>,<example in lisp>,<example in Haskell>,<solution in haskell> and <description of implementation> fields. | If you want to work on one of these, put your name in the block so we know someone's working on it. Then, change n in your block to the appropriate problem number, and fill in the <Problem description>,<example in lisp>,<example in Haskell>,<solution in haskell> and <description of implementation> fields. |
Revision as of 17:50, 14 December 2006
These are Haskell translations of Ninety-Nine Prolog Problems.
If you want to work on one of these, put your name in the block so we know someone's working on it. Then, change n in your block to the appropriate problem number, and fill in the <Problem description>,<example in lisp>,<example in Haskell>,<solution in haskell> and <description of implementation> fields.
Binary trees
The type of binary trees:
data Tree a = Empty | Branch a (Tree a) (Tree a)
deriving (Show, Eq)
An example tree:
tree1 = Branch 1 (Branch 2 Empty (Branch 4 Empty Empty))
(Branch 2 Empty Empty)
Problem 54A
(*) Check whether a given term represents a binary tree
Example:
* (istree (a (b nil nil) nil)) T * (istree (a (b nil nil))) NILThe type system ensures that all terms of type
Tree a
are binary trees: it is just not possible to construct an invalid tree
with this type. Hence, it is redundant to introduce a predicate to
check this property -- the istree predicate is trivially true, for
anything of type Tree a
.
istree :: Tree a -> Bool
istree _ = True
Running this:
*M> istree Empty
True
*M> istree (Branch 1 Empty Empty)
True
*M> istree (Branch 1 Empty (Branch 2 Empty Empty))
True
Problem 55
(**) Construct completely balanced binary trees
In a completely balanced binary tree, the following property holds for every node: The number of nodes in its left subtree and the number of nodes in its right subtree are almost equal, which means their difference is not greater than one.
Write a function cbal-tree to construct completely balanced binary trees for a given number of nodes. The predicate should generate all solutions via backtracking. Put the letter 'x' as information into all nodes of the tree.
Example:
* cbal-tree(4,T). T = t(x, t(x, nil, nil), t(x, nil, t(x, nil, nil))) ; T = t(x, t(x, nil, nil), t(x, t(x, nil, nil), nil)) ; etc......No
Example in Haskell:
*Main> cbalTree 4 [Branch 'x' (Branch 'x' Empty Empty) (Branch 'x' Empty (Branch 'x' Empty Empty)),Branch 'x' (Branch 'x' Empty Empty) (Branch 'x' (Branch 'x' Empty Empty) Empty),Branch 'x' (Branch 'x' Empty (Branch 'x' Empty Empty)) (Branch 'x' Empty Empty),Branch 'x' (Branch 'x' (Branch 'x' Empty Empty) Empty) (Branch 'x' Empty Empty)]
Solution:
cbalTree 0 = [Empty]
cbalTree n = [Branch 'x' l r | i <- [q .. q + r], l <- cbalTree i, r <- cbalTree (n - i - 1)]
where (q, r) = quotRem (n-1) 2
Here we use the list monad to enumerate all the trees, in a style that is more natural than standard backtracking.
Problem 56
(**) Symmetric binary trees
Let us call a binary tree symmetric if you can draw a vertical line through the root node and then the right subtree is the mirror image of the left subtree. Write a predicate symmetric/1 to check whether a given binary tree is symmetric. Hint: Write a predicate mirror/2 first to check whether one tree is the mirror image of another. We are only interested in the structure, not in the contents of the nodes.
Example in Haskell:
*Main> symmetric (Branch 'x' (Branch 'x' Empty Empty) Empty) False *Main> symmetric (Branch 'x' (Branch 'x' Empty Empty) (Branch 'x' Empty Empty)) True
Solution:
mirror Empty Empty = True
mirror (Branch _ a b) (Branch _ x y) = mirror a y && mirror b x
mirror _ _ = False
symmetric Empty = True
symmetric (Branch _ l r) = mirror l r
Problem 57
(**) Binary search trees (dictionaries)
Use the predicate add/3, developed in chapter 4 of the course, to write a predicate to construct a binary search tree from a list of integer numbers.
Example:
* construct([3,2,5,7,1],T). T = t(3, t(2, t(1, nil, nil), nil), t(5, nil, t(7, nil, nil)))
Then use this predicate to test the solution of the problem P56.
Example:
* test-symmetric([5,3,18,1,4,12,21]). Yes * test-symmetric([3,2,5,7,1]). No
Example in Haskell:
*Main> construct [3, 2, 5, 7, 1] Branch 3 (Branch 2 (Branch 1 Empty Empty) Empty) (Branch 5 Empty (Branch 7 Empty Empty)) *Main> symmetric . construct $ [5, 3, 18, 1, 4, 12, 21] True *Main> symmetric . construct $ [3, 2, 5, 7, 1] True
Solution:
add :: Ord a => a -> Tree a -> Tree a
add x Empty = Branch x Empty Empty
add x t@(Branch y l r) = case compare x y of
LT -> Branch y (add x l) r
GT -> Branch y l (add x r)
EQ -> t
construct xs = foldl (flip add) Empty xs
Here, the definition of construct is trivial, because the pattern of accumulating from the left is captured by the standard function foldl.
Problem 58
(**) Generate-and-test paradigm
Apply the generate-and-test paradigm to construct all symmetric, completely balanced binary trees with a given number of nodes.
Example:
* sym-cbal-trees(5,Ts). Ts = [t(x, t(x, nil, t(x, nil, nil)), t(x, t(x, nil, nil), nil)), t(x, t(x, t(x, nil, nil), nil), t(x, nil, t(x, nil, nil)))]
Example in Haskell:
*Main> symCbalTrees 5 [Branch 'x' (Branch 'x' Empty (Branch 'x' Empty Empty)) (Branch 'x' (Branch 'x' Empty Empty) Empty),Branch 'x' (Branch 'x' (Branch 'x' Empty Empty) Empty) (Branch 'x' Empty (Branch 'x' Empty Empty))]
Solution:
symCbalTrees = filter symmetric . cbalTree
Problem 59
<Problem description>
Example: <example in lisp> Example in Haskell: <example in Haskell>
Solution:
<solution in haskell>
<description of implementation>
Problem 60
<Problem description>
Example: <example in lisp> Example in Haskell: <example in Haskell>
Solution:
<solution in haskell>
<description of implementation>