Prime numbers
The following is an elegant (and highly inefficient) way to generate a list of all the prime numbers in the universe:
primes = sieve [2..] where
sieve (p:xs) = p : sieve (filter (\x -> x `mod` p > 0) xs)
With this definition made, a few other useful (??) functions can be added:
is_prime n = n `elem` (takeWhile (n >=) primes)
factors n = filter (\p -> n `mod` p == 0) primes
factorise 1 = []
factorise n =
let f = head $ factors n
in f : factorise (n `div` f)
(Note the use of takeWhile
to prevent the infinite list of primes requiring an infinite amount of CPU time and RAM to process!)
The following is a more efficient prime generator, implementing the sieve of Eratosthenes:
merge xs@(x:xt) ys@(y:yt) = case compare x y of
LT -> x : (merge xt ys)
EQ -> x : (merge xt yt)
GT -> y : (merge xs yt)
diff xs@(x:xt) ys@(y:yt) = case compare x y of
LT -> x : (diff xt ys)
EQ -> diff xt yt
GT -> diff xs yt
merge' (x:xt) ys = x : (merge xt ys)
primes = ps ++ (diff ns $ foldr1 merge' $ map f $ tail primes)
where ps = [2,3,5]
ns = [7,9..]
f p = [ m*p | m <- [p,p+2..]]
merge'
effectively implements a heap, exploiting Haskell's lazy evaluation model. For another example of this idiom see the Prelude's ShowS
type, which again exploits Haskell's lazy evaluation model
to avoid explicitly coding efficient concatenable strings.