Difference between revisions of "99 questions/46 to 50"

From HaskellWiki
Jump to navigation Jump to search
m
 
(One intermediate revision by one other user not shown)
Line 6: Line 6:
 
 
 
== Problem 46 ==
 
== Problem 46 ==
  +
<div style="border-bottom:1px solid #eee">(**) Truth tables for logical expressions. <span style="float:right"><small>[[99 questions/Solutions/46|Solutions]]</small></span>
  +
</div>
  +
&nbsp;<br>
   
(**) Define predicates and/2, or/2, nand/2, nor/2, xor/2, impl/2 and equ/2 (for logical equivalence) which succeed or fail according to the result of their respective operations; e.g. and(A,B) will succeed, if and only if both A and B succeed.
+
Define predicates and/2, or/2, nand/2, nor/2, xor/2, impl/2 and equ/2 (for logical equivalence) which succeed or fail according to the result of their respective operations; e.g. and(A,B) will succeed, if and only if both A and B succeed.
   
 
A logical expression in two variables can then be written as in the following example: and(or(A,B),nand(A,B)).
 
A logical expression in two variables can then be written as in the following example: and(or(A,B),nand(A,B)).
Line 26: Line 29:
   
 
<haskell>
 
<haskell>
> table (\a b -> (and' a (or' a b)))
+
λ> table (\a b -> (and' a (or' a b)))
 
True True True
 
True True True
 
True False True
 
True False True
Line 33: Line 36:
 
</haskell>
 
</haskell>
   
[[99 questions/Solutions/46 | Solutions]]
 
   
 
== Problem 47 ==
 
== Problem 47 ==
  +
<div style="border-bottom:1px solid #eee">(*) Truth tables for logical expressions (part 2). <span style="float:right"><small>[[99 questions/Solutions/47|Solutions]]</small></span>
  +
</div>
  +
&nbsp;<br>
   
 
Continue Problem 46 by defining and/2, or/2, etc as being operators. This allows to write the logical expression in the more natural way, as in the example: A and (A or not B). Define operator precedence as usual; i.e. as in Java.
(*) Truth tables for logical expressions (2).
 
 
Continue problem P46 by defining and/2, or/2, etc as being operators. This allows to write the logical expression in the more natural way, as in the example: A and (A or not B). Define operator precedence as usual; i.e. as in Java.
 
   
 
Example:
 
Example:
Line 54: Line 57:
   
 
<haskell>
 
<haskell>
> table2 (\a b -> a `and'` (a `or'` not b))
+
λ> table2 (\a b -> a `and'` (a `or'` not b))
 
True True True
 
True True True
 
True False True
 
True False True
Line 61: Line 64:
 
</haskell>
 
</haskell>
   
[[99 questions/Solutions/47 | Solutions]]
 
 
 
 
== Problem 48 ==
 
== Problem 48 ==
  +
<div style="border-bottom:1px solid #eee">(*) Truth tables for logical expressions (part 3). <span style="float:right"><small>[[99 questions/Solutions/48|Solutions]]</small></span>
  +
</div>
  +
&nbsp;<br>
   
 
Generalize Problem 47 in such a way that the logical expression may contain any number of logical variables. Define table/2 in a way that table(List,Expr) prints the truth table for the expression Expr, which contains the logical variables enumerated in List.
(**) Truth tables for logical expressions (3).
 
 
Generalize problem P47 in such a way that the logical expression may contain any number of logical variables. Define table/2 in a way that table(List,Expr) prints the truth table for the expression Expr, which contains the logical variables enumerated in List.
 
   
 
Example:
 
Example:
Line 86: Line 89:
   
 
<haskell>
 
<haskell>
> tablen 3 (\[a,b,c] -> a `and'` (b `or'` c) `equ'` a `and'` b `or'` a `and'` c)
+
λ> tablen 3 (\[a,b,c] -> a `and'` (b `or'` c) `equ'` a `and'` b `or'` a `and'` c)
 
-- infixl 3 `equ'`
 
-- infixl 3 `equ'`
 
True True True True
 
True True True True
Line 108: Line 111:
 
</haskell>
 
</haskell>
   
[[99 questions/Solutions/48 | Solutions]]
 
   
 
== Problem 49 ==
 
== Problem 49 ==
  +
<div style="border-bottom:1px solid #eee">(**) Gray codes. <span style="float:right"><small>[[99 questions/Solutions/49|Solutions]]</small></span>
 
  +
</div>
(**) Gray codes.
 
  +
&nbsp;<br>
   
 
An n-bit Gray code is a sequence of n-bit strings constructed according to certain rules. For example,
 
An n-bit Gray code is a sequence of n-bit strings constructed according to certain rules. For example,
Line 133: Line 136:
   
 
<haskell>
 
<haskell>
P49> gray 3
+
λ> gray 3
 
["000","001","011","010","110","111","101","100"]
 
["000","001","011","010","110","111","101","100"]
 
</haskell>
 
</haskell>
 
[[99 questions/Solutions/49 | Solutions]]
 
   
 
 
 
== Problem 50 ==
 
== Problem 50 ==
  +
<div style="border-bottom:1px solid #eee">(***) Huffman codes. <span style="float:right"><small>[[99 questions/Solutions/50|Solutions]]</small></span>
 
  +
</div>
(***) Huffman codes.
 
  +
&nbsp;<br>
   
 
We suppose a set of symbols with their frequencies, given as a list of fr(S,F) terms. Example: [fr(a,45),fr(b,13),fr(c,12),fr(d,16),fr(e,9),fr(f,5)]. Our objective is to construct a list hc(S,C) terms, where C is the Huffman code word for the symbol S. In our example, the result could be Hs = [hc(a,'0'), hc(b,'101'), hc(c,'100'), hc(d,'111'), hc(e,'1101'), hc(f,'1100')] [hc(a,'01'),...etc.]. The task shall be performed by the predicate huffman/2 defined as follows:
 
We suppose a set of symbols with their frequencies, given as a list of fr(S,F) terms. Example: [fr(a,45),fr(b,13),fr(c,12),fr(d,16),fr(e,9),fr(f,5)]. Our objective is to construct a list hc(S,C) terms, where C is the Huffman code word for the symbol S. In our example, the result could be Hs = [hc(a,'0'), hc(b,'101'), hc(c,'100'), hc(d,'111'), hc(e,'1101'), hc(f,'1100')] [hc(a,'01'),...etc.]. The task shall be performed by the predicate huffman/2 defined as follows:
Line 152: Line 154:
 
Example in Haskell:
 
Example in Haskell:
 
<haskell>
 
<haskell>
*Exercises> huffman [('a',45),('b',13),('c',12),('d',16),('e',9),('f',5)]
+
λ> huffman [('a',45),('b',13),('c',12),('d',16),('e',9),('f',5)]
 
[('a',"0"),('b',"101"),('c',"100"),('d',"111"),('e',"1101"),('f',"1100")]
 
[('a',"0"),('b',"101"),('c',"100"),('d',"111"),('e',"1101"),('f',"1100")]
 
</haskell>
 
</haskell>
   
[[99 questions/Solutions/50 | Solutions]]
 
   
 
[[Category:Tutorials]]
 
[[Category:Tutorials]]

Latest revision as of 02:38, 11 June 2023


This is part of Ninety-Nine Haskell Problems, based on Ninety-Nine Prolog Problems.

Logic and Codes

Problem 46

(**) Truth tables for logical expressions. Solutions

 

Define predicates and/2, or/2, nand/2, nor/2, xor/2, impl/2 and equ/2 (for logical equivalence) which succeed or fail according to the result of their respective operations; e.g. and(A,B) will succeed, if and only if both A and B succeed.

A logical expression in two variables can then be written as in the following example: and(or(A,B),nand(A,B)).

Now, write a predicate table/3 which prints the truth table of a given logical expression in two variables.

Example:

(table A B (and A (or A B)))
true true true
true fail true
fail true fail
fail fail fail

Example in Haskell:

λ> table (\a b -> (and' a (or' a b)))
True True True
True False True
False True False
False False False


Problem 47

(*) Truth tables for logical expressions (part 2). Solutions

 

Continue Problem 46 by defining and/2, or/2, etc as being operators. This allows to write the logical expression in the more natural way, as in the example: A and (A or not B). Define operator precedence as usual; i.e. as in Java.

Example:

* (table A B (A and (A or not B)))
true true true
true fail true
fail true fail
fail fail fail

Example in Haskell:

λ> table2 (\a b -> a `and'` (a `or'` not b))
True True True
True False True
False True False
False False False


Problem 48

(*) Truth tables for logical expressions (part 3). Solutions

 

Generalize Problem 47 in such a way that the logical expression may contain any number of logical variables. Define table/2 in a way that table(List,Expr) prints the truth table for the expression Expr, which contains the logical variables enumerated in List.

Example:

* (table (A,B,C) (A and (B or C) equ A and B or A and C))
true true true true
true true fail true
true fail true true
true fail fail true
fail true true true
fail true fail true
fail fail true true
fail fail fail true

Example in Haskell:

λ> tablen 3 (\[a,b,c] -> a `and'` (b `or'` c) `equ'` a `and'` b `or'` a `and'` c)
-- infixl 3 `equ'`
True  True  True  True
True  True  False True
True  False True  True
True  False False True
False True  True  True
False True  False True
False False True  True
False False False True

-- infixl 7 `equ'`
True  True  True  True
True  True  False True
True  False True  True
True  False False False
False True  True  False
False True  False False
False False True  False
False False False False


Problem 49

(**) Gray codes. Solutions

 

An n-bit Gray code is a sequence of n-bit strings constructed according to certain rules. For example,

n = 1: C(1) = ['0','1'].
n = 2: C(2) = ['00','01','11','10'].
n = 3: C(3) = ['000','001','011','010',´110´,´111´,´101´,´100´].

Find out the construction rules and write a predicate with the following specification:

% gray(N,C) :- C is the N-bit Gray code

Can you apply the method of "result caching" in order to make the predicate more efficient, when it is to be used repeatedly?

Example in Haskell:

λ> gray 3
["000","001","011","010","110","111","101","100"]


Problem 50

(***) Huffman codes. Solutions

 

We suppose a set of symbols with their frequencies, given as a list of fr(S,F) terms. Example: [fr(a,45),fr(b,13),fr(c,12),fr(d,16),fr(e,9),fr(f,5)]. Our objective is to construct a list hc(S,C) terms, where C is the Huffman code word for the symbol S. In our example, the result could be Hs = [hc(a,'0'), hc(b,'101'), hc(c,'100'), hc(d,'111'), hc(e,'1101'), hc(f,'1100')] [hc(a,'01'),...etc.]. The task shall be performed by the predicate huffman/2 defined as follows:

% huffman(Fs,Hs) :- Hs is the Huffman code table for the frequency table Fs

Example in Haskell:

λ> huffman [('a',45),('b',13),('c',12),('d',16),('e',9),('f',5)]
[('a',"0"),('b',"101"),('c',"100"),('d',"111"),('e',"1101"),('f',"1100")]