Difference between revisions of "99 questions/Solutions/46"

From HaskellWiki
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 4: Line 4:
   
 
Now, write a predicate table/3 which prints the truth table of a given logical expression in two variables.
 
Now, write a predicate table/3 which prints the truth table of a given logical expression in two variables.
  +
  +
The first step in this problem is to define the Boolean predicates:
   
 
<haskell>
 
<haskell>
  +
-- NOT negates a single Boolean argument
 
not' :: Bool -> Bool
 
not' :: Bool -> Bool
 
not' True = False
 
not' True = False
 
not' False = True
 
not' False = True
   
  +
-- Type signature for remaining logic functions
 
and',or',nor',nand',xor',impl',equ' :: Bool -> Bool -> Bool
 
and',or',nor',nand',xor',impl',equ' :: Bool -> Bool -> Bool
  +
  +
-- AND is True if both a and b are True
 
and' True True = True
 
and' True True = True
 
and' _ _ = False
 
and' _ _ = False
   
  +
-- OR is True if a or b or both are True
 
or' False False = False
 
or' False False = False
 
or' _ _ = True
 
or' _ _ = True
   
  +
-- NOR is the negation of 'or'
 
nor' a b = not' $ or' a b
 
nor' a b = not' $ or' a b
  +
  +
-- NAND is the negation of 'and'
 
nand' a b = not' $ and' a b
 
nand' a b = not' $ and' a b
   
  +
-- XOR is True if either a or b is True, but not if both are True
 
xor' True False = True
 
xor' True False = True
 
xor' False True = True
 
xor' False True = True
 
xor' _ _ = False
 
xor' _ _ = False
   
  +
-- IMPL is True if a implies b, equivalent to (not a) or (b)
 
impl' a b = (not' a) `or'` b
 
impl' a b = (not' a) `or'` b
   
  +
-- EQU is True if a and b are equal
 
equ' True True = True
 
equ' True True = True
 
equ' False False = True
 
equ' False False = True
 
equ' _ _ = False
 
equ' _ _ = False
  +
</haskell>
   
  +
The above implementations build each logic function from scratch; they could be shortened using Haskell's builtin equivalents:
table2 :: (Bool -> Bool -> Bool) -> IO ()
 
  +
table2 f = mapM_ putStrLn [show a ++ " " ++ show b ++ " " ++ show (f a b)
 
  +
<haskell>
| a <- [True, False], b <- [True, False]]
 
  +
and' a b = a && b
  +
or' a b = a || b
  +
nand' a b = not (and' a b)
  +
nor' a b = not (or' a b)
  +
xor' a b = not (equ' a b)
  +
impl' a b = or' (not a) b
  +
equ' a b = a == b
 
</haskell>
 
</haskell>
   
  +
Some could be reduced even further using [[Pointfree]] style:
The implementations of the logic functions are quite verbose and can be shortened in places (like "equ' = (==)").
 
  +
  +
<haskell>
  +
and' = (&&)
  +
or' = (||)
  +
equ' = (==)
  +
</haskell>
  +
  +
The only remaining task is to generate the truth table; most of the complexity here comes from the string conversion and IO. The approach used here accepts a Boolean function <tt>(Bool -> Bool -> Bool)</tt>, then calls that function with all four combinations of two Boolean values, and converts the resulting values into a list of space-separated strings. Finally, the strings are printed out by mapping <hask>putStrLn</hask> across the list of strings:
  +
  +
<haskell>
 
table :: (Bool -> Bool -> Bool) -> IO ()
 
table f = mapM_ putStrLn [show a ++ " " ++ show b ++ " " ++ show (f a b)
 
| a <- [True, False], b <- [True, False]]
  +
</haskell>
   
 
The table function in Lisp supposedly uses Lisp's symbol handling to substitute variables on the fly in the expression. I chose passing a binary function instead because parsing an expression would be more verbose in haskell than it is in Lisp. Template Haskell could also be used :)
 
The table function in Lisp supposedly uses Lisp's symbol handling to substitute variables on the fly in the expression. I chose passing a binary function instead because parsing an expression would be more verbose in haskell than it is in Lisp. Template Haskell could also be used :)
  +
  +
The table function can be generalized to work for any given binary function and domain.
  +
<haskell>
  +
table :: (Bool -> Bool -> Bool) -> String
  +
table f = printBinary f [True, False]
  +
  +
printBinary :: (Show a, Show b) => (a -> a -> b) -> [a] -> String
  +
printBinary f domain = concatMap (++ "\n") [printBinaryInstance f x y | x <- domain, y <- domain]
  +
  +
printBinaryInstance :: (Show a, Show b) => (a -> a -> b) -> a -> a -> String
  +
printBinaryInstance f x y = show x ++ " " ++ show y ++ " " ++ show (f x y)
  +
</haskell>

Revision as of 13:42, 25 November 2010

(**) Define predicates and/2, or/2, nand/2, nor/2, xor/2, impl/2 and equ/2 (for logical equivalence) which succeed or fail according to the result of their respective operations; e.g. and(A,B) will succeed, if and only if both A and B succeed.

A logical expression in two variables can then be written as in the following example: and(or(A,B),nand(A,B)).

Now, write a predicate table/3 which prints the truth table of a given logical expression in two variables.

The first step in this problem is to define the Boolean predicates:

-- NOT negates a single Boolean argument
not' :: Bool -> Bool
not' True  = False
not' False = True

-- Type signature for remaining logic functions
and',or',nor',nand',xor',impl',equ' :: Bool -> Bool -> Bool

-- AND is True if both a and b are True
and' True True = True
and' _    _    = False

-- OR is True if a or b or both are True
or' False False = False
or' _     _     = True

-- NOR is the negation of 'or'
nor'  a b = not' $ or'  a b

-- NAND is the negation of 'and'
nand' a b = not' $ and' a b

-- XOR is True if either a or b is True, but not if both are True
xor' True  False = True
xor' False True  = True
xor' _     _     = False

-- IMPL is True if a implies b, equivalent to (not a) or (b)
impl' a b = (not' a) `or'` b

-- EQU is True if a and b are equal
equ' True  True  = True
equ' False False = True
equ' _     _     = False

The above implementations build each logic function from scratch; they could be shortened using Haskell's builtin equivalents:

and'  a b = a && b
or'   a b = a || b
nand' a b = not (and' a b)
nor'  a b = not (or' a b)
xor'  a b = not (equ' a b)
impl' a b = or' (not a) b
equ'  a b = a == b

Some could be reduced even further using Pointfree style:

and' = (&&)
or'  = (||)
equ' = (==)

The only remaining task is to generate the truth table; most of the complexity here comes from the string conversion and IO. The approach used here accepts a Boolean function (Bool -> Bool -> Bool), then calls that function with all four combinations of two Boolean values, and converts the resulting values into a list of space-separated strings. Finally, the strings are printed out by mapping putStrLn across the list of strings:

table :: (Bool -> Bool -> Bool) -> IO ()
table f = mapM_ putStrLn [show a ++ " " ++ show b ++ " " ++ show (f a b)
                                | a <- [True, False], b <- [True, False]]

The table function in Lisp supposedly uses Lisp's symbol handling to substitute variables on the fly in the expression. I chose passing a binary function instead because parsing an expression would be more verbose in haskell than it is in Lisp. Template Haskell could also be used :)

The table function can be generalized to work for any given binary function and domain.

table :: (Bool -> Bool -> Bool) -> String
table f = printBinary f [True, False]

printBinary :: (Show a, Show b) => (a -> a -> b) -> [a] -> String
printBinary f domain = concatMap (++ "\n") [printBinaryInstance f x y | x <- domain, y <- domain]

printBinaryInstance :: (Show a, Show b) => (a -> a -> b) -> a -> a -> String
printBinaryInstance f x y = show x ++ " " ++ show y ++ " " ++ show (f x y)