# 99 questions/Solutions/6

From HaskellWiki

(*) Find out whether a list is a palindrome. A palindrome can be read forward or backward; e.g. (x a m a x).

```
isPalindrome :: (Eq a) => [a] -> Bool
isPalindrome xs = xs == (reverse xs)
```

```
isPalindrome' [] = True
isPalindrome' [_] = True
isPalindrome' xs = (head xs) == (last xs) && (isPalindrome' $ init $ tail xs)
```

Here's one to show it done in a fold just for the fun of it. Do note that it is less efficient then the previous 2 though.

```
isPalindrome'' :: (Eq a) => [a] -> Bool
isPalindrome'' xs = foldl (\acc (a,b) -> if a == b then acc else False) True input
where
input = zip xs (reverse xs)
```

Another one just for fun:

```
isPalindrome''' :: (Eq a) => [a] -> Bool
isPalindrome''' = Control.Monad.liftM2 (==) id reverse
```

Or even:

```
isPalindrome'''' :: (Eq a) => [a] -> Bool
ispalindrome'''' = (==) Control.Applicative.<*> reverse
```

Here's one that does half as many compares:

```
palindrome :: (Eq a) => [a] -> Bool
palindrome xs = p [] xs xs
where p rev (x:xs) (_:_:ys) = p (x:rev) xs ys
p rev (x:xs) [_] = rev == xs
p rev xs [] = rev == xs
```

Here's one using foldr and zipWith.

```
palindrome :: (Eq a) => [a] -> Bool
palindrome xs = foldr (&&) True $ zipWith (==) xs (reverse xs)
```