Difference between revisions of "99 questions/Solutions/84"

From HaskellWiki
Jump to navigation Jump to search
(Solution to p84 using prim algorithm)
 
Line 1: Line 1:
<Example in Haskell>
 
 
Create an undirected-graph:
 
Create an undirected-graph:
graph = mkGraph False (1,5) [(1,2,12),(1,3,34),(1,5,78),(2,4,55),(2,5,32),(3,4,61),(3,5,44),(4,5,93)]
+
graph = mkGraph False (1,5) [(1,2,12),(1,3,34),(1,5,78),(2,4,55),(2,5,32),(3,4,61),(3,5,44),(4,5,93)]
   
 
False means undirected
 
False means undirected
   
 
Use prim algorithm to find the minimal spanning tree:
 
Use prim algorithm to find the minimal spanning tree:
prim graph
+
prim graph
   
 
Output:
 
Output:
[(55,2,4),(34,1,3),(32,2,5),(12,1,2)]
+
[(55,2,4),(34,1,3),(32,2,5),(12,1,2)]
   
  +
<haskell>
 
module Prim where
 
module Prim where
   
Line 41: Line 41:
 
prim' t r mst = let e@(c,u',v') = minimum[(c,u,v) | (u,v,c) <- es, elem u t,elem v r]
 
prim' t r mst = let e@(c,u',v') = minimum[(c,u,v) | (u,v,c) <- es, elem u t,elem v r]
 
in prim' (v':t) (delete v' r) (e:mst)
 
in prim' (v':t) (delete v' r) (e:mst)
  +
</haskell>

Revision as of 20:08, 28 November 2010

Create an undirected-graph:

   graph = mkGraph False (1,5) [(1,2,12),(1,3,34),(1,5,78),(2,4,55),(2,5,32),(3,4,61),(3,5,44),(4,5,93)]

False means undirected

Use prim algorithm to find the minimal spanning tree:

   prim graph

Output:

   [(55,2,4),(34,1,3),(32,2,5),(12,1,2)]
module Prim where

import Data.List
import Array

type Graph n w = Array n [(n,w)]

mkGraph dir bnds es =
    accumArray (\xs x -> x:xs) [] bnds
               ([(x1,(x2,w)) | (x1,x2,w) <- es] ++
               if dir then []
               else [(x2,(x1,w)) | (x1,x2,w) <- es, x1 /= x2])
               
adjacent g v = map fst (g!v)

nodes g = indices g

edgeIn g (x,y) = elem y (adjacent g x)

weight x y g = head [c | (a,c) <- g!x, a == y]

edgesD g = [(v1,v2,w) | v1 <- nodes g, (v2,w) <- g!v1]
edgesU g = [(v1,v2,w) | v1 <- nodes g, (v2,w) <- g!v1, v1 < v2]

prim g = prim' [n] ns []
    where (n:ns) = nodes g
          es = edgesU g
          prim' t [] mst = mst
          prim' t r mst = let e@(c,u',v') = minimum[(c,u,v) | (u,v,c) <- es, elem u t,elem v r]
                          in  prim' (v':t) (delete v' r) (e:mst)