|
|
Line 1: |
Line 1: |
− | == [http://projecteuler.net/index.php?section=problems&id=111 Problem 111] ==
| + | Do them on your own! |
− | Search for 10-digit primes containing the maximum number of repeated digits.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Control.Monad (replicateM)
| |
− | | |
− | -- All ways of interspersing n copies of x into a list
| |
− | intr :: Int -> a -> [a] -> [[a]]
| |
− | intr 0 _ y = [y]
| |
− | intr n x (y:ys) = concat
| |
− | [map ((replicate i x ++) . (y :)) $ intr (n-i) x ys
| |
− | | i <- [0..n]]
| |
− | intr n x _ = [replicate n x]
| |
− | | |
− | -- All 10-digit primes containing the maximal number of the digit d
| |
− | maxDigits :: Char -> [Integer]
| |
− | maxDigits d = head $ dropWhile null
| |
− | [filter isPrime $ map read $ filter ((/='0') . head) $
| |
− | concatMap (intr (10-n) d) $
| |
− | replicateM n $ delete d "0123456789"
| |
− | | n <- [1..9]]
| |
− |
| |
− | problem_111 = sum $ concatMap maxDigits "0123456789"
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=112 Problem 112] ==
| |
− | Investigating the density of "bouncy" numbers.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | isIncreasing' n p
| |
− | | n == 0 = True
| |
− | | p >= p1 = isIncreasing' (n `div` 10) p1
| |
− | | otherwise = False
| |
− | where
| |
− | p1 = n `mod` 10
| |
− | | |
− | isIncreasing :: Int -> Bool
| |
− | isIncreasing n = isIncreasing' (n `div` 10) (n `mod` 10)
| |
− | | |
− | isDecreasing' n p
| |
− | | n == 0 = True
| |
− | | p <= p1 = isDecreasing' (n `div` 10) p1
| |
− | | otherwise = False
| |
− | where
| |
− | p1 = n `mod` 10
| |
− | | |
− | isDecreasing :: Int -> Bool
| |
− | isDecreasing n = isDecreasing' (n `div` 10) (n `mod` 10)
| |
− | | |
− | isBouncy n = not (isIncreasing n) && not (isDecreasing n)
| |
− | nnn=1500000
| |
− | num150 =length [x|x<-[1..nnn],isBouncy x]
| |
− | p112 n nb
| |
− | | fromIntegral nnb / fromIntegral n >= 0.99 = n
| |
− | | otherwise = prob112' (n+1) nnb
| |
− | where
| |
− | nnb = if isBouncy n then nb + 1 else nb
| |
− | | |
− | problem_112=p112 (nnn+1) num150
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=113 Problem 113] ==
| |
− | How many numbers below a googol (10100) are not "bouncy"?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Array
| |
− | | |
− | mkArray b f = listArray b $ map f (range b)
| |
− | | |
− | digits = 100
| |
− | | |
− | inc = mkArray ((1, 0), (digits, 9)) ninc
| |
− | dec = mkArray ((1, 0), (digits, 9)) ndec
| |
− | | |
− | ninc (1, _) = 1
| |
− | ninc (l, d) = sum [inc ! (l-1, i) | i <- [d..9]]
| |
− | | |
− | ndec (1, _) = 1
| |
− | ndec (l, d) = sum [dec ! (l-1, i) | i <- [0..d]]
| |
− | | |
− | problem_113 = sum [inc ! i | i <- range ((digits, 0), (digits, 9))]
| |
− | + sum [dec ! i | i <- range ((1, 1), (digits, 9))]
| |
− | - digits*9 -- numbers like 11111 are counted in both inc and dec
| |
− | - 1 -- 0 is included in the increasing numbers
| |
− | </haskell>
| |
− | Note: inc and dec contain the same data, but it seems clearer to duplicate them.
| |
− | | |
− | it is another way to solution this problem:
| |
− | <haskell>
| |
− | binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y))
| |
− | prodxy x y=product[x..y]
| |
− | problem_113=sum[binomial (8+a) a+binomial (9+a) a-10|a<-[1..100]]
| |
− | </haskell>
| |
− | == [http://projecteuler.net/index.php?section=problems&id=114 Problem 114] ==
| |
− | Investigating the number of ways to fill a row with separated blocks that are at least three units long.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | -- fun in p115
| |
− | problem_114=fun 3 50
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=115 Problem 115] ==
| |
− | Finding a generalisation for the number of ways to fill a row with separated blocks.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y))
| |
− | prodxy x y=product[x..y]
| |
− | fun m n=sum[binomial (k+a) (k-a)|a<-[0..div (n+1) (m+1)],let k=1-a*m+n]
| |
− | problem_115 = (+1)$length$takeWhile (<10^6) [fun 50 i|i<-[1..]]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=116 Problem 116] ==
| |
− | Investigating the number of ways of replacing square tiles with one of three coloured tiles.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | binomial x y =div (prodxy (y+1) x) (prodxy 1 (x-y))
| |
− | prodxy x y=product[x..y]
| |
− | f116 n x=sum[binomial (a+b) a|a<-[1..div n x],let b=n-a*x]
| |
− | p116 x=sum[f116 x a|a<-[2..4]]
| |
− | problem_116 = p116 50
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=117 Problem 117] ==
| |
− | Investigating the number of ways of tiling a row using different-sized tiles.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | fibs5 = 0 : 0 :1: 1:zipWith4 (\a b c d->a+b+c+d) fibs5 a1 a2 a3
| |
− | where
| |
− | a1=tail fibs5
| |
− | a2=tail a1
| |
− | a3=tail a2
| |
− | p117 x=fibs5!!(x+2)
| |
− | problem_117 = p117 50
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=118 Problem 118] ==
| |
− | Exploring the number of ways in which sets containing prime elements can be made.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | digits = ['1'..'9']
| |
− | | |
− | -- possible partitions voor prime number sets
| |
− | -- leave out patitions with more than 4 1's
| |
− | -- because only {2,3,5,7,..} is possible
| |
− | -- and the [9]-partition because every permutation of all
| |
− | -- nine digits is divisable by 3
| |
− | test xs
| |
− | |len>4=False
| |
− | |xs==[9]=False
| |
− | |otherwise=True
| |
− | where
| |
− | len=length $filter (==1) xs
| |
− | parts = filter test $partitions 9
| |
− | permutationsOf [] = [[]]
| |
− | permutationsOf xs = [x:xs' | x <- xs, xs' <- permutationsOf (delete x xs)]
| |
− | combinationsOf 0 _ = [[]]
| |
− | combinationsOf _ [] = []
| |
− | combinationsOf k (x:xs) =
| |
− | map (x:) (combinationsOf (k-1) xs) ++ combinationsOf k xs
| |
− | | |
− | priemPerms [] = 0
| |
− | priemPerms ds =
| |
− | fromIntegral . length . filter (isPrime . read) . permutationsOf $ ds
| |
− | setsums [] 0 = [[]]
| |
− | setsums [] _ = []
| |
− | setsums (x:xs) n
| |
− | | x > n = setsums xs n
| |
− | | otherwise = map (x:) (setsums (x:xs) (n-x)) ++ setsums xs n
| |
− | | |
− | partitions n = setsums (reverse [1..n]) n
| |
− | | |
− | fc :: [Integer] -> [Char] -> Integer
| |
− | fc (p:[]) ds = priemPerms ds
| |
− | fc (p:ps) ds =
| |
− | foldl fcmul 0 . combinationsOf p $ ds
| |
− | where
| |
− | fcmul x y
| |
− | | np y == 0 = x
| |
− | | otherwise = x + np y * fc ps (ds \\ y)
| |
− | where
| |
− | np = priemPerms
| |
− | -- here is the 'imperfection' correction method:
| |
− | -- make use of duplicate reducing factors for partitions
| |
− | -- with repeating factors, f.i. [1,1,1,1,2,3]:
| |
− | -- in this case 4 1's -> factor = 4!
| |
− | -- or for [1,1,1,3,3] : factor = 3! * 2!
| |
− | dupF :: [Integer] -> Integer
| |
− | dupF = foldl (\ x y -> x * product [1..y]) 1 . map (fromIntegral . length) . group
| |
− | | |
− | main = do
| |
− | print . sum . map (\x -> fc x digits `div` dupF x) $ parts
| |
− | problem_118 = main
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=119 Problem 119] ==
| |
− | Investigating the numbers which are equal to sum of their digits raised to some power.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− | digits n
| |
− | {- 123->[3,2,1]
| |
− | -}
| |
− | |n<10=[n]
| |
− | |otherwise= y:digits x
| |
− | where
| |
− | (x,y)=divMod n 10
| |
− | problem_119 =sort [(a^b)|
| |
− | a<-[2..200],
| |
− | b<-[2..9],
| |
− | let m=a^b,
| |
− | let n=sum$digits m,
| |
− | n==a]!!29
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=120 Problem 120] ==
| |
− | Finding the maximum remainder when (a − 1)n + (a + 1)n is divided by a2.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | fun m=div (m*(8*m^2-3*m-5)) 3
| |
− | problem_120 = fun 500
| |
− | </haskell>
| |