# Difference between revisions of "Euler problems/151 to 160"

m (Clarify the comments to problem 160) |
|||

Line 185: | Line 185: | ||

radix p = map snd . takeWhile (/= (0, 0)) . |
radix p = map snd . takeWhile (/= (0, 0)) . |
||

iterate ((`divMod` p) . fst) . (`divMod` p) |
iterate ((`divMod` p) . fst) . (`divMod` p) |
||

+ | </haskell> |
||

+ | it have another fast way to do this . |
||

+ | |||

+ | Solution: |
||

+ | <haskell> |
||

+ | import Data.List |
||

+ | mulMod :: Integral a => a -> a -> a -> a |
||

+ | mulMod a b c= (b * c) `rem` a |
||

+ | squareMod :: Integral a => a -> a -> a |
||

+ | squareMod a b = (b * b) `rem` a |
||

+ | pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a |
||

+ | pow' _ _ _ 0 = 1 |
||

+ | pow' mul sq x' n' = f x' n' 1 |
||

+ | where |
||

+ | f x n y |
||

+ | | n == 1 = x `mul` y |
||

+ | | r == 0 = f x2 q y |
||

+ | | otherwise = f x2 q (x `mul` y) |
||

+ | where |
||

+ | (q,r) = quotRem n 2 |
||

+ | x2 = sq x |
||

+ | powMod :: Integral a => a -> a -> a -> a |
||

+ | powMod m = pow' (mulMod m) (squareMod m) |
||

+ | |||

+ | productMod =foldl (mulMod (10^5)) 1 |
||

+ | hFacial 0=1 |
||

+ | hFacial a |
||

+ | |gcd a 5==1=mod (a*hFacial(a-1)) (5^5) |
||

+ | |otherwise=hFacial(a-1) |
||

+ | fastFacial a= hFacial $mod a 6250 |
||

+ | numPrime x p=takeWhile(>0) [div x (p^a)|a<-[1..]] |
||

+ | p160 x=mulMod t5 a b |
||

+ | where |
||

+ | t5=10^5 |
||

+ | lst=numPrime x 5 |
||

+ | a=powMod t5 1563 $mod c 2500 |
||

+ | b=productMod c6 |
||

+ | c=sum lst |
||

+ | c6=map fastFacial $x:lst |
||

+ | problem_160 = p160 (10^12) |
||

+ | |||

</haskell> |
</haskell> |

## Revision as of 08:56, 31 December 2007

## Contents

## Problem 151

Paper sheets of standard sizes: an expected-value problem.

Solution:

```
problem_151 = undefined
```

## Problem 152

Writing 1/2 as a sum of inverse squares

Note that if p is an odd prime, the sum of inverse squares of all terms divisible by p must have reduced denominator not divisible by p.

Solution:

```
import Data.Ratio
import Data.List
invSq n = 1 % (n * n)
sumInvSq = sum . map invSq
subsets (x:xs) = let s = subsets xs in s ++ map (x :) s
subsets _ = [[]]
primes = 2 : 3 : 7 : [p | p <- [11, 13..79],
all (\q -> p `mod` q /= 0) [3, 5, 7]]
-- All subsets whose sum of inverse squares,
-- when added to x, does not contain a factor of p
pfree s x p = [(y, t) | t <- subsets s, let y = x + sumInvSq t,
denominator y `mod` p /= 0]
-- Verify that we need not consider terms divisible by 11, or by any
-- prime greater than 13. Nor need we consider any term divisible
-- by 25, 27, 32, or 49.
verify = all (\p -> null $ tail $ pfree [p, 2*p..85] 0 p) $
11 : dropWhile (< 17) primes ++ [25, 27, 32, 49]
-- All pairs (x, s) where x is a rational number whose reduced
-- denominator is not divisible by any prime greater than 3;
-- and s is all sets of numbers up to 80 divisible
-- by a prime greater than 3, whose sum of inverse squares is x.
only23 = foldl f [(0, [[]])] [13, 7, 5]
where
f a p = collect $ [(y, u ++ v) | (x, s) <- a,
(y, v) <- pfree (terms p) x p,
u <- s]
terms p = [n * p | n <- [1..80`div`p],
all (\q -> n `mod` q /= 0) $
11 : takeWhile (>= p) [13, 7, 5]
]
collect = map (\z -> (fst $ head z, map snd z)) .
groupBy fstEq . sortBy cmpFst
fstEq (x, _) (y, _) = x == y
cmpFst (x, _) (y, _) = compare x y
-- All subsets (of an ordered set) whose sum of inverse squares is x
findInvSq x y = f x $ zip3 y (map invSq y) (map sumInvSq $ init $ tails y)
where
f 0 _ = [[]]
f x ((n, r, s):ns)
| r > x = f x ns
| s < x = []
| otherwise = map (n :) (f (x - r) ns) ++ f x ns
f _ _ = []
-- All numbers up to 80 that are divisible only by the primes
-- 2 and 3 and are not divisible by 32 or 27.
all23 = [n | a <- [0..4], b <- [0..2], let n = 2^a * 3^b, n <= 80]
solutions = if verify
then [sort $ u ++ v | (x, s) <- only23,
u <- findInvSq (1%2 - x) all23,
v <- s]
else undefined
problem_152 = length solutions
```

## Problem 153

Investigating Gaussian Integers

Solution:

```
problem_153 = undefined
```

## Problem 154

Exploring Pascal's pyramid.

Solution:

```
problem_154 = undefined
```

## Problem 155

Counting Capacitor Circuits.

Solution:

```
problem_155 = undefined
```

## Problem 156

Counting Digits

Solution:

```
problem_156 = undefined
```

## Problem 157

Solving the diophantine equation 1/a+1/b= p/10n

Solution:

```
problem_157 = undefined
```

## Problem 158

Exploring strings for which only one character comes lexicographically after its neighbour to the left.

Solution:

```
problem_158 = undefined
```

## Problem 159

Digital root sums of factorisations.

Solution:

```
problem_159 = undefined
```

## Problem 160

Factorial trailing digits

We use the following two facts:

Fact 1: `(2^(d + 4*5^(d-1)) - 2^d) `mod` 10^d == 0`

Fact 2: `product [n | n <- [0..10^d], gcd n 10 == 1] `mod` 10^d == 1`

We really only need these two facts for the special case of
`d == 5`

, and we can verify that directly by
evaluating the above two Haskell expressions.

More generally:

Fact 1 follows from the fact that the group of invertible elements
of the ring of integers modulo `5^d`

has
`4*5^(d-1)`

elements.

Fact 2 follows from the fact that the group of invertible elements
of the ring of integers modulo `10^d`

is isomorphic to the product
of a cyclic group of order 2 and another cyclic group.

Solution:

```
problem_160 = trailingFactorialDigits 5 (10^12)
trailingFactorialDigits d n = twos `times` odds
where
base = 10 ^ d
x `times` y = (x * y) `mod` base
multiply = foldl' times 1
x `toPower` k = multiply $ genericReplicate n x
e = facFactors 2 n - facFactors 5 n
twos
| e <= d = 2 `toPower` e
| otherwise = 2 `toPower` (d + (e - d) `mod` (4 * 5 ^ (d - 1)))
odds = multiply [odd | a <- takeWhile (<= n) $ iterate (* 2) 1,
b <- takeWhile (<= n) $ iterate (* 5) a,
odd <- [3, 5 .. n `div` b `mod` base],
odd `mod` 5 /= 0]
-- The number of factors of the prime p in n!
facFactors p = sum . zipWith (*) (iterate (\x -> p * x + 1) 1) .
tail . radix p
-- The digits of n in base b representation
radix p = map snd . takeWhile (/= (0, 0)) .
iterate ((`divMod` p) . fst) . (`divMod` p)
```

it have another fast way to do this .

Solution:

```
import Data.List
mulMod :: Integral a => a -> a -> a -> a
mulMod a b c= (b * c) `rem` a
squareMod :: Integral a => a -> a -> a
squareMod a b = (b * b) `rem` a
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a
pow' _ _ _ 0 = 1
pow' mul sq x' n' = f x' n' 1
where
f x n y
| n == 1 = x `mul` y
| r == 0 = f x2 q y
| otherwise = f x2 q (x `mul` y)
where
(q,r) = quotRem n 2
x2 = sq x
powMod :: Integral a => a -> a -> a -> a
powMod m = pow' (mulMod m) (squareMod m)
productMod =foldl (mulMod (10^5)) 1
hFacial 0=1
hFacial a
|gcd a 5==1=mod (a*hFacial(a-1)) (5^5)
|otherwise=hFacial(a-1)
fastFacial a= hFacial $mod a 6250
numPrime x p=takeWhile(>0) [div x (p^a)|a<-[1..]]
p160 x=mulMod t5 a b
where
t5=10^5
lst=numPrime x 5
a=powMod t5 1563 $mod c 2500
b=productMod c6
c=sum lst
c6=map fastFacial $x:lst
problem_160 = p160 (10^12)
```