# Euler problems/151 to 160

### From HaskellWiki

## Contents |

## 1 Problem 151

Paper sheets of standard sizes: an expected-value problem.

Solution:

problem_151 = undefined

## 2 Problem 152

Writing 1/2 as a sum of inverse squares

Note that if p is an odd prime, the sum of inverse squares of all terms divisible by p must have reduced denominator not divisible by p.

Solution:

import Data.Ratio import Data.List invSq n = 1 % (n * n) sumInvSq = sum . map invSq subsets (x:xs) = let s = subsets xs in s ++ map (x :) s subsets _ = [[]] primes = 2 : 3 : 7 : [p | p <- [11, 13..83], all (\q -> p `mod` q /= 0) [3, 5, 7]] -- All subsets whose sum of inverse squares, -- when added to x, does not contain a factor of p pfree s x p = [(y, t) | t <- subsets s, let y = x + sumInvSq t, denominator y `mod` p /= 0] -- Verify that we need not consider terms divisible by 11, or by any -- prime greater than 13. Nor need we consider any term divisible -- by 25, 27, 32, or 49. verify = all (\p -> null $ tail $ pfree [p, 2*p..85] 0 p) $ 11 : dropWhile (< 17) primes ++ [25, 27, 32, 49] -- All pairs (x, s) where x is a rational number whose reduced -- denominator is not divisible by any prime greater than 3; -- and s is all sets of numbers up to 80 divisible -- by a prime greater than 3, whose sum of inverse squares is x. only23 = foldl f [(0, [[]])] [13, 7, 5] where f a p = collect $ [(y, u ++ v) | (x, s) <- a, (y, v) <- pfree (terms p) x p, u <- s] terms p = [n * p | n <- [1..80`div`p], all (\q -> n `mod` q /= 0) $ 11 : takeWhile (>= p) [13, 7, 5] ] collect = map (\z -> (fst $ head z, map snd z)) . groupBy fstEq . sortBy cmpFst fstEq (x, _) (y, _) = x == y cmpFst (x, _) (y, _) = compare x y -- All subsets (of an ordered set) whose sum of inverse squares is x findInvSq x y = f x $ zip3 y (map invSq y) (map sumInvSq $ init $ tails y) where f 0 _ = [[]] f x ((n, r, s):ns) | r > x = f x ns | s < x = [] | otherwise = map (n :) (f (x - r) ns) ++ f x ns f _ _ = [] -- All numbers up to 80 that are divisible only by the primes -- 2 and 3 and are not divisible by 32 or 27. all23 = [n | a <- [0..4], b <- [0..2], let n = 2^a * 3^b, n <= 80] solutions = if verify then [sort $ u ++ v | (x, s) <- only23, u <- findInvSq (1%2 - x) all23, v <- s] else undefined problem_152 = length solutions

## 3 Problem 153

Investigating Gaussian Integers

Solution:

problem_153 = undefined

## 4 Problem 154

Exploring Pascal's pyramid.

Solution:

problem_154 = undefined

## 5 Problem 155

Counting Capacitor Circuits.

Solution:

problem_155 = undefined

## 6 Problem 156

Counting Digits

Solution:

problem_156 = undefined

## 7 Problem 157

Solving the diophantine equation 1/a+1/b= p/10n

Solution:

problem_157 = undefined

## 8 Problem 158

Exploring strings for which only one character comes lexicographically after its neighbour to the left.

Solution:

problem_158 = undefined

## 9 Problem 159

Digital root sums of factorisations.

Solution:

problem_159 = undefined

## 10 Problem 160

Factorial trailing digits

Solution:

problem_160 = undefined