Euler problems/171 to 180

From HaskellWiki
< Euler problems
Revision as of 13:39, 2 February 2008 by Lisp (talk | contribs)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 171

Finding numbers for which the sum of the squares of the digits is a square.

Solution:

#include <stdio.h>
 
static int result = 0;
 
#define digits 20
static long long fact[digits+1];
static const long long precision      = 1000000000;
static const long long precision_mult =  111111111;
 
#define maxsquare 64 /* must be a power of 2 > digits * 9^2 */
 
static inline int issquare( int n )
{
    for( int step = maxsquare/2, i = step;;)
    {
        if( i*i == n )        return i;
        if( !( step >>= 1 ) ) return -1;
        if( i*i > n )         i -= step;
        else                  i += step;
    }
}
 
static inline void dodigit( int d, int nr, int sum, long long c, int s )
{
    if( d )
        for( int n = 0; n <= nr; c *= ++n, s += d, sum += d*d )
            dodigit( d-1, nr - n, sum, c, s );
    else if( issquare( sum ) > 0 )
        result = ( s * ( fact[digits] / ( c * fact[nr] ) )
                 / digits % precision * precision_mult
                 + result ) % precision;
}
 
int main( void )
{
    fact[0] = 1;
    for( int i = 1; i < digits+1; i++ ) fact[i] = fact[i-1]*i;
    dodigit( 9, digits, 0, 1, 0 );
    printf( "%d\n", result );
    return 0;
}
problem_171 = main

Problem 172

Investigating numbers with few repeated digits.

Solution:

factorial n = product [1..toInteger n]

fallingFactorial x n = product [x - fromInteger i | i <- [0..toInteger n - 1] ]

choose n k = fallingFactorial n k `div` factorial k

-- how many numbers can we get having d digits and p positions
p172 0 _ = 0
p172 d p 
    | p < 4 = d^p
    | otherwise = 
        (p172' p) +  p*(p172' (p-1)) + (choose p 2)*(p172' (p-2)) + (choose p 3)*(p172' (p-3))
    where
    p172' = p172 (d-1)
 
problem_172= (p172 10 18) * 9 `div` 10

Problem 173

Using up to one million tiles how many different "hollow" square laminae can be formed? Solution:

problem_173=
    let c=div (10^6) 4
        xm=floor$sqrt $fromIntegral c
        k=[div c x|x<-[1..xm]]
    in  sum k-(div (xm*(xm+1)) 2)

Problem 174

Counting the number of "hollow" square laminae that can form one, two, three, ... distinct arrangements.

Solution:

#include <stdio.h>

int main()
{
    int a=0;
    int c=1000000/4;
    int L[1000000];
    int i,x,b;
    for(i=0;i<=1000000;i++)
    {
        L[i]=0;
    }

    for(x=1;x<=500;x++)
    {
        int q=x*x;
        for(b=1;b<=250000;b++)
        {
            int y=q+b*x;
            if(y<=c){L[y*4]++;}
        }
    }

    for(i=0;i<=1000000;i++)
    {if(L[i]<=10&&L[i]>=1)
        {a++;}
    }

    printf( "%d\n", a);
    return 1;
}
problem_174 = main

Problem 175

Fractions involving the number of different ways a number can be expressed as a sum of powers of 2. Solution:

sternTree x 0=[]
sternTree x y=
    m:sternTree y n  
    where
    (m,n)=divMod x y
findRat x y
    |odd l=take (l-1) k++[last k-1,1]
    |otherwise=k
    where
    k=sternTree x y
    l=length k
p175 x y= 
    init$foldl (++) "" [a++","|
    a<-map show $reverse $filter (/=0)$findRat x y]
problems_175=p175 123456789 987654321
test=p175 13 17

Problem 176

Rectangular triangles that share a cathetus. Solution:

--k=47547 
--2*k+1=95095 = 5*7*11*13*19
lst=[5,7,11,13,19]
primes=[2,3,5,7,11]
problem_176 =
    product[a^b|(a,b)<-zip primes (reverse n)]
    where
    la=div (last lst+1) 2
    m=map (\x->div x 2)$init lst
    n=m++[la]

Problem 177

Integer angled Quadrilaterals.

Solution:

problem_177 = undefined

Problem 178

Step Numbers Solution:

problem_178 = undefined

Problem 179

Consecutive positive divisors. Solution:

#include <stdio.h>

#define SZ 10000000
int n[SZ + 1];

int main ()
{
    int i, j;
    for (i = 0; i <= SZ; i++)
        n[i] = 1;

    for (i = 2; i <= SZ; i++)
        for (j = i; j <= SZ; j += i)
            n[j] += 1;

    j = 0;
    for (i = 1; i < SZ; i++)
        if (n[i] == n[i + 1])
            j++;

    printf ("%d\n", j);
    return 0;
}
problem_179 = main

Problem 180

Rational zeros of a function of three variables. Solution:

problem_180 = undefined