|
|
Line 1: |
Line 1: |
− | == [http://projecteuler.net/index.php?section=problems&id=21 Problem 21] ==
| + | Do them on your own! |
− | Evaluate the sum of all amicable pairs under 10000.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | problem_21 =
| |
− | sum [n |
| |
− | n <- [2..9999],
| |
− | let m = eulerTotient n,
| |
− | m > 1,
| |
− | m < 10000,
| |
− | n == eulerTotient m
| |
− | ]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=22 Problem 22] ==
| |
− | What is the total of all the name scores in the file of first names?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− | import Data.Char
| |
− | problem_22 = do
| |
− | input <- readFile "names.txt"
| |
− | let names = sort $ read$"["++ input++"]"
| |
− | let scores = zipWith score names [1..]
| |
− | print $ show $ sum $ scores
| |
− | where
| |
− | score w i = (i *) $ sum $ map (\c -> ord c - ord 'A' + 1) w
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=23 Problem 23] ==
| |
− | Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Array
| |
− | n = 28124
| |
− | abundant n = eulerTotient n - n > n
| |
− | abunds_array = listArray (1,n) $ map abundant [1..n]
| |
− | abunds = filter (abunds_array !) [1..n]
| |
− | | |
− | rests x = map (x-) $ takeWhile (<= x `div` 2) abunds
| |
− | isSum = any (abunds_array !) . rests
| |
− | | |
− | problem_23 = putStrLn $ show $ foldl1 (+) $ filter (not . isSum) [1..n]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=24 Problem 24] ==
| |
− | What is the millionth lexicographic permutation of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− |
| |
− | fac 0 = 1
| |
− | fac n = n * fac (n - 1)
| |
− | perms [] _= []
| |
− | perms xs n=
| |
− | x:( perms ( delete x $ xs ) (mod n m))
| |
− | where
| |
− | m=fac$(length(xs) -1)
| |
− | y=div n m
| |
− | x = xs!!y
| |
− |
| |
− | problem_24 = perms "0123456789" 999999
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=25 Problem 25] ==
| |
− | What is the first term in the Fibonacci sequence to contain 1000 digits?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− | fib x
| |
− | |x==0=0
| |
− | |x==1=1
| |
− | |x==2=1
| |
− | |odd x=(fib (d+1))^2+(fib d)^2
| |
− | |otherwise=(fib (d+1))^2-(fib (d-1))^2
| |
− | where
| |
− | d=div x 2
| |
− | | |
− | phi=(1+sqrt 5)/2
| |
− | dig x=floor( (fromInteger x-1) * log 10 /log phi)
| |
− | problem_25 =
| |
− | head[a|a<-[dig num..],(>=limit)$fib a]
| |
− | where
| |
− | num=1000
| |
− | limit=10^(num-1)
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=26 Problem 26] ==
| |
− | Find the value of d < 1000 for which 1/d contains the longest recurring cycle.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | next n d = (n `mod` d):next (10*n`mod`d) d
| |
− | | |
− | idigs n = tail $ take (1+n) $ next 1 n
| |
− | | |
− | pos x = map fst . filter ((==x) . snd) . zip [1..]
| |
− | | |
− | periods n = let d = idigs n in pos (head d) (tail d)
| |
− | | |
− | problem_26 =
| |
− | snd$maximum [(m,a)|
| |
− | a<-[800..1000] ,
| |
− | let k=periods a,
| |
− | not$null k,
| |
− | let m=head k
| |
− | ]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=27 Problem 27] ==
| |
− | Find a quadratic formula that produces the maximum number of primes for consecutive values of n.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | eulerCoefficients n
| |
− | = [((len, a*b), (a, b))
| |
− | | b <- takeWhile (<n) primes, a <- [-b+1..n-1],
| |
− | let len = length $ takeWhile (isPrime . (\x -> x^2 + a*x + b)) [0..],
| |
− | if b == 2 then even a else odd a, len > 39]
| |
− |
| |
− | problem_27 = snd . fst . maximum . eulerCoefficients $ 1000
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=28 Problem 28] ==
| |
− | What is the sum of both diagonals in a 1001 by 1001 spiral?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | problem_28 = sum (map (\n -> 4*(n-2)^2+10*(n-1)) [3,5..1001]) + 1
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=29 Problem 29] ==
| |
− | How many distinct terms are in the sequence generated by a<sup>b</sup> for 2 ≤ a ≤ 100 and 2 ≤ b ≤ 100?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Control.Monad
| |
− | problem_29 = length . group . sort $ liftM2 (^) [2..100] [2..100]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=30 Problem 30] ==
| |
− | Find the sum of all the numbers that can be written as the sum of fifth powers of their digits.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Array
| |
− | import Data.Char
| |
− |
| |
− | p = listArray (0,9) $ map (^5) [0..9]
| |
− |
| |
− | upperLimit = 295277
| |
− |
| |
− | candidates =
| |
− | [ n |
| |
− | n <- [10..upperLimit],
| |
− | (sum $ digits n) `mod` 10 == last(digits n),
| |
− | powersum n == n
| |
− | ]
| |
− | where
| |
− | digits n = map digitToInt $ show n
| |
− | powersum n = sum $ map (p!) $ digits n
| |
− |
| |
− | problem_30 = sum candidates
| |
− | </haskell>
| |