Difference between revisions of "Euler problems/31 to 40"

From HaskellWiki
Jump to navigation Jump to search
(→‎Problem 31: which is twice faster)
 
(42 intermediate revisions by 16 users not shown)
Line 1: Line 1:
  +
== [http://projecteuler.net/index.php?section=problems&id=31 Problem 31] ==
[[Category:Programming exercise spoilers]]
 
== [http://projecteuler.net/index.php?section=view&id=31 Problem 31] ==
 
 
Investigating combinations of English currency denominations.
 
Investigating combinations of English currency denominations.
   
 
Solution:
 
Solution:
   
  +
The most straightforward solution, following the logical structure closely, actually generating the solutions (won't be the optimal one obviously by a long shot, but serves as an illustration, a development aid... runs in under 0.5 second on Ideone). We can make up the sum either with or without the most valuable coin:
This is the naive doubly recursive solution. Speed would be greatly improved by use of [[memoization]], dynamic programming, or the closed form.
 
  +
 
<haskell>
 
<haskell>
problem_31 = pence 200 [1,2,5,10,20,50,100,200]
+
p31 = length $ g 200 [200,100,50,20,10,5,2,1]
where pence 0 _ = 1
+
where
  +
g 0 _ = [[]] -- exactly one way to get 0 sum, with no coins at all
pence n [] = 0
 
  +
g n [] = [] -- no way to sum up no coins to a non-zero sum
pence n denominations@(d:ds)
 
| n < d = 0
+
g n coins@(c:rest)
| otherwise = pence (n - d) denominations
+
| c <= n = map (c:) (g (n-c) coins) -- with the top coin
+ pence n ds
+
++ g n rest
  +
| otherwise = g n rest -- without it
 
</haskell>
 
</haskell>
   
  +
Here is the naive doubly recursive solution. Speed would be greatly improved by use of [[memoization]], dynamic programming, or the closed form.
== [http://projecteuler.net/index.php?section=view&id=32 Problem 32] ==
 
  +
<haskell>
  +
problem_31 = ways [1,2,5,10,20,50,100,200] !!200
  +
where ways [] = 1 : repeat 0
  +
ways (coin:coins) =n
  +
where n = zipWith (+) (ways coins) (replicate coin 0 ++ n)
  +
</haskell>
  +
  +
A beautiful solution, making usage of laziness and recursion to implement a dynamic programming scheme, blazingly fast despite actually generating the combinations and not only counting them :
  +
<haskell>
  +
coins = [1,2,5,10,20,50,100,200]
  +
  +
combinations = foldl (\without p ->
  +
let (poor,rich) = splitAt p without
  +
with = poor ++ zipWith (++) (map (map (p:)) with)
  +
rich
  +
in with
  +
) ([[]] : repeat [])
  +
  +
problem_31 = length $ combinations coins !! 200
  +
</haskell>
  +
  +
The above may be ''a beautiful solution'', but I couldn't understand it without major mental gymnastics. I would like to offer the following, which I hope will be easier to follow for ordinary ''mentats'' -- HenryLaxen 2008-02-22
  +
<haskell>
  +
coins = [1,2,5,10,20,50,100,200]
  +
  +
withcoins 1 x = [[x]]
  +
withcoins n x = concatMap addCoin [0 .. x `div` coins!!(n-1)]
  +
where addCoin k = map (++[k]) (withcoins (n-1) (x - k*coins!!(n-1)) )
  +
  +
problem_31 = length $ withcoins (length coins) 200
  +
</haskell>
  +
  +
The program above can be slightly modified as shown below so it just counts the combinations without generating them.
  +
<haskell>
  +
coins = [1,2,5,10,20,50,100,200]
  +
  +
countCoins 1 _ = 1
  +
countCoins n x = sum $ map addCoin [0 .. x `div` coins !! pred n]
  +
where addCoin k = countCoins (pred n) (x - k * coins !! pred n)
  +
  +
problem_31 = countCoins (length coins) 200
  +
</haskell>
  +
  +
== [http://projecteuler.net/index.php?section=problems&id=32 Problem 32] ==
 
Find the sum of all numbers that can be written as pandigital products.
 
Find the sum of all numbers that can be written as pandigital products.
   
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
  +
import Control.Monad
problem_32 = sum $ nub $ map (\(a, b) -> a * b) multiplicands
 
  +
where
 
  +
combs 0 xs = [([],xs)]
multiplicands =
 
[(a,b)| a <- [2..5000], b <- [a..(9999 `div` a)], check a b]
+
combs n xs = [(y:ys,rest) | y <- xs, (ys,rest) <- combs (n-1) (delete y xs)]
  +
check a b =
 
  +
l2n :: (Integral a) => [a] -> a
no_zero s
 
  +
l2n = foldl' (\a b -> 10*a+b) 0
&& (length ss) == 9
 
  +
&& foldr (\x y -> length x == 1 && y) True ss
 
  +
swap (a,b) = (b,a)
where
 
  +
s = show a ++ show b ++ show (a*b)
 
  +
explode :: (Integral a) => a -> [a]
ss = group $ sort s
 
  +
explode = unfoldr (\a -> if a==0 then Nothing else Just . swap $ quotRem a 10)
no_zero (x:xs)
 
  +
| x == '0' = False
 
  +
pandigiticals =
| null xs = True
 
  +
nub $ do (beg,end) <- combs 5 [1..9]
| otherwise = no_zero xs
 
  +
n <- [1,2]
  +
let (a,b) = splitAt n beg
  +
res = l2n a * l2n b
  +
guard $ sort (explode res) == end
  +
return res
  +
  +
problem_32 = sum pandigiticals
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=33 Problem 33] ==
+
== [http://projecteuler.net/index.php?section=problems&id=33 Problem 33] ==
 
Discover all the fractions with an unorthodox cancelling method.
 
Discover all the fractions with an unorthodox cancelling method.
   
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
import Ratio
+
import Data.Ratio
  +
problem_33 = denominator . product $ rs
 
  +
{-
problem_33 = denominator (product $ rs ++ rs')
 
  +
xy/yz = x/z
 
  +
(10x + y)/(10y+z) = x/z
rs = [(x%y) | a <- [0..9], b <- [1..9], c <- [1..9], let x = 10*a + c, let y = 10*c + b, x /= y, x%y < 1, x%y == a%b]
 
  +
9xz + yz = 10xy
  +
-}
  +
rs = [(10*x+y)%(10*y+z) | x <- t,
  +
y <- t,
  +
z <- t,
  +
x /= y ,
  +
(9*x*z) + (y*z) == (10*x*y)]
  +
where t = [1..9]
  +
</haskell>
   
  +
That is okay, but why not let the computer do the ''thinking'' for you? Isn't this a little more directly expressive of the problem? -- HenryLaxen 2008-02-34
rs' = filter (<1) $ map (\x -> denominator x % numerator x) rs
 
  +
<haskell>
  +
import Data.Ratio
  +
problem_33 = denominator $ product
  +
[ a%c | a<-[1..9], b<-[1..9], c<-[1..9],
  +
isCurious a b c, a /= b && a/= c]
  +
where isCurious a b c = ((10*a+b)%(10*b+c)) == (a%c)
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=34 Problem 34] ==
+
== [http://projecteuler.net/index.php?section=problems&id=34 Problem 34] ==
 
Find the sum of all numbers which are equal to the sum of the factorial of their digits.
 
Find the sum of all numbers which are equal to the sum of the factorial of their digits.
   
Line 60: Line 127:
 
problem_34 = sum [ x | x <- [3..100000], x == facsum x ]
 
problem_34 = sum [ x | x <- [3..100000], x == facsum x ]
 
where facsum = sum . map (product . enumFromTo 1 . digitToInt) . show
 
where facsum = sum . map (product . enumFromTo 1 . digitToInt) . show
  +
  +
</haskell>
  +
  +
Another way:
  +
  +
<haskell>
  +
import Data.Array
  +
import Data.List
  +
  +
{-
  +
  +
The key comes in realizing that N*9! < 10^N when N >= 9, so we
  +
only have to check up to 9 digit integers. The other key is
  +
that addition is commutative, so we only need to generate
  +
combinations (with duplicates) of the sums of the various
  +
factorials. These sums are the only potential "curious" sums.
  +
  +
-}
  +
  +
fac n = a!n
  +
where a = listArray (0,9) (1:(scanl1 (*) [1..9]))
  +
  +
-- subsets of size k, including duplicates
  +
combinationsOf 0 _ = [[]]
  +
combinationsOf _ [] = []
  +
combinationsOf k (x:xs) = map (x:)
  +
(combinationsOf (k-1) (x:xs)) ++ combinationsOf k xs
  +
  +
intToList n = reverse $ unfoldr
  +
(\x -> if x == 0 then Nothing else Just (x `mod` 10, x `div` 10)) n
  +
  +
isCurious (n,l) = sort (intToList n) == l
  +
  +
-- Turn a list into the sum of the factorials of the digits
  +
factorialSum l = sum $ map fac l
  +
  +
possiblyCurious = map (\z -> (factorialSum z,z))
  +
curious n = filter isCurious $ possiblyCurious $ combinationsOf n [0..9]
  +
problem_34 = sum $ (fst . unzip) $ concatMap curious [2..9]
 
</haskell>
 
</haskell>
  +
(The wiki formatting is messing up the unzip"&gt;unzip line above, it is correct in the version I typed in. It should of course just be fst . unzip)
   
== [http://projecteuler.net/index.php?section=view&id=35 Problem 35] ==
+
== [http://projecteuler.net/index.php?section=problems&id=35 Problem 35] ==
 
How many circular primes are there below one million?
 
How many circular primes are there below one million?
   
Line 68: Line 175:
 
<haskell>
 
<haskell>
 
import Data.List (tails, (\\))
 
import Data.List (tails, (\\))
  +
 
 
primes :: [Integer]
 
primes :: [Integer]
 
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
 
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
  +
 
 
primeFactors :: Integer -> [Integer]
 
primeFactors :: Integer -> [Integer]
 
primeFactors n = factor n primes
 
primeFactors n = factor n primes
Line 79: Line 186:
 
| m `mod` p == 0 = p : factor (m `div` p) (p:ps)
 
| m `mod` p == 0 = p : factor (m `div` p) (p:ps)
 
| otherwise = factor m ps
 
| otherwise = factor m ps
  +
 
 
isPrime :: Integer -> Bool
 
isPrime :: Integer -> Bool
 
isPrime 1 = False
 
isPrime 1 = False
 
isPrime n = case (primeFactors n) of
 
isPrime n = case (primeFactors n) of
 
(_:_:_) -> False
 
(_:_:_) -> False
otherwise -> True
+
_ -> True
  +
 
 
permutations :: Integer -> [Integer]
 
permutations :: Integer -> [Integer]
 
permutations n = take l $ map (read . take l) $ tails $ take (2*l -1) $ cycle s
 
permutations n = take l $ map (read . take l) $ tails $ take (2*l -1) $ cycle s
Line 91: Line 198:
 
s = show n
 
s = show n
 
l = length s
 
l = length s
  +
 
 
circular_primes :: [Integer] -> [Integer]
 
circular_primes :: [Integer] -> [Integer]
 
circular_primes [] = []
 
circular_primes [] = []
Line 99: Line 206:
 
where
 
where
 
p = permutations x
 
p = permutations x
  +
 
 
problem_35 :: Int
 
problem_35 :: Int
 
problem_35 = length $ circular_primes $ takeWhile (<1000000) primes
 
problem_35 = length $ circular_primes $ takeWhile (<1000000) primes
 
</haskell>
 
</haskell>
   
  +
Using isPrime from above, and observing that one that can greatly reduce the search space because no circular prime can contain an even number, nor a 5, since eventually such a digit will be at the end of the number, and
== [http://projecteuler.net/index.php?section=view&id=36 Problem 36] ==
 
  +
hence composite, we get: (HenryLaxen 2008-02-27)
  +
  +
<haskell>
  +
import Control.Monad (replicateM)
  +
  +
canBeCircularPrimeList = [1,3,7,9]
  +
  +
listToInt n = foldl (\x y -> 10*x+y) 0 n
  +
rot n l = y ++ x where (x,y) = splitAt n l
  +
allrots l = map (\x -> rot x l) [0..(length l)-1]
  +
isCircular l = all (isPrime . listToInt) $ allrots l
  +
circular 1 = [[2],[3],[5],[7]] -- a slightly special case
  +
circular n = filter isCircular $ replicateM n canBeCircularPrimeList
  +
  +
problem_35 = length $ concatMap circular [1..6]
  +
</haskell>
  +
  +
  +
== [http://projecteuler.net/index.php?section=problems&id=36 Problem 36] ==
 
Find the sum of all numbers less than one million, which are palindromic in base 10 and base 2.
 
Find the sum of all numbers less than one million, which are palindromic in base 10 and base 2.
   
Line 111: Line 237:
 
import Numeric
 
import Numeric
 
import Data.Char
 
import Data.Char
  +
 
 
showBin = flip (showIntAtBase 2 intToDigit) ""
 
showBin = flip (showIntAtBase 2 intToDigit) ""
  +
 
 
isPalindrome x = x == reverse x
 
isPalindrome x = x == reverse x
  +
 
 
problem_36 = sum [x | x <- [1,3..1000000], isPalindrome (show x), isPalindrome (showBin x)]
 
problem_36 = sum [x | x <- [1,3..1000000], isPalindrome (show x), isPalindrome (showBin x)]
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=37 Problem 37] ==
+
== [http://projecteuler.net/index.php?section=problems&id=37 Problem 37] ==
 
Find the sum of all eleven primes that are both truncatable from left to right and right to left.
 
Find the sum of all eleven primes that are both truncatable from left to right and right to left.
   
 
Solution:
 
Solution:
 
<haskell>
 
<haskell>
  +
import Data.List (tails, inits, nub)
problem_37 = undefined
 
  +
  +
primes :: [Integer]
  +
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
  +
  +
primeFactors :: Integer -> [Integer]
  +
primeFactors n = factor n primes
  +
where
  +
factor _ [] = []
  +
factor m (p:ps) | p*p > m = [m]
  +
| m `mod` p == 0 = p : factor (m `div` p) (p:ps)
  +
| otherwise = factor m ps
  +
  +
isPrime :: Integer -> Bool
  +
isPrime 1 = False
  +
isPrime n = case (primeFactors n) of
  +
(_:_:_) -> False
  +
_ -> True
  +
  +
truncs :: Integer -> [Integer]
  +
truncs n = nub . map read $ (take l . tail . tails) s ++ (take l . tail . inits) s
  +
where
  +
l = length s - 1
  +
s = show n
  +
  +
problem_37 = sum $ take 11 [x | x <- dropWhile (<=9) primes, all isPrime (truncs x)]
 
</haskell>
 
</haskell>
   
  +
Or, more cleanly:
== [http://projecteuler.net/index.php?section=view&id=38 Problem 38] ==
 
What is the largest 1 to 9 pandigital that can be formed by multiplying a fixed number by 1, 2, 3, ... ?
 
   
Solution:
 
 
<haskell>
 
<haskell>
  +
import Data.Numbers.Primes (primes, isPrime)
problem_38 = maximum $ catMaybes [result | j <- [1..9999],
 
  +
let p2 = show j ++ show (2*j),
 
  +
test' :: Int -> Int -> (Int -> Int -> Int) -> Bool
let p3 = p2 ++ show (3*j),
 
  +
test' n d f
let p4 = p3 ++ show (4*j),
 
let p5 = p4 ++ show (5*j),
+
| d > n = True
let result
+
| otherwise = isPrime (f n d) && test' n (10*d) f
  +
| isPan p2 = Just p2
 
  +
test :: Int -> Bool
| isPan p3 = Just p3
 
  +
test n = test' n 10 (mod) && test' n 10 (div)
| isPan p4 = Just p4
 
  +
| isPan p5 = Just p5
 
  +
problem_37 = sum $ take 11 $ filter test $ filter (>7) primes
| otherwise = Nothing]
 
where isPan s = sort s == "123456789"
 
 
</haskell>
 
</haskell>
   
  +
Other solution:
 
  +
== [http://projecteuler.net/index.php?section=problems&id=38 Problem 38] ==
  +
What is the largest 1 to 9 pandigital that can be formed by multiplying a fixed number by 1, 2, 3, ... ?
  +
  +
Solution:
 
<haskell>
 
<haskell>
 
import Data.List
 
import Data.List
   
mult n i vs | length (concat vs) >= 9 = concat vs
+
mult n i vs
  +
| length (concat vs) >= 9 = concat vs
| otherwise = mult n (i+1) (vs ++ [show (n * i)])
 
  +
| otherwise = mult n (i+1) (vs ++ [show (n * i)])
   
 
problem_38 :: Int
 
problem_38 :: Int
problem_38 = maximum $ map read $ filter ((['1'..'9'] ==) .sort) $ [ mult n 1 [] | n <- [2..9999] ]
+
problem_38 = maximum . map read . filter ((['1'..'9'] ==) . sort)
  +
$ [mult n 1 [] | n <- [2..9999]]
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=39 Problem 39] ==
+
== [http://projecteuler.net/index.php?section=problems&id=39 Problem 39] ==
 
If p is the perimeter of a right angle triangle, {a, b, c}, which value, for p ≤ 1000, has the most solutions?
 
If p is the perimeter of a right angle triangle, {a, b, c}, which value, for p ≤ 1000, has the most solutions?
   
Line 167: Line 321:
 
$ sort [n*p | p <- pTriples, n <- [1..1000 `div` p]]
 
$ sort [n*p | p <- pTriples, n <- [1..1000 `div` p]]
 
counts = map length perims
 
counts = map length perims
Just indexMax = findIndex (== (maximum counts)) $ counts
+
Just indexMax = elemIndex (maximum counts) $ counts
 
pTriples = [p |
 
pTriples = [p |
 
n <- [1..floor (sqrt 1000)],
 
n <- [1..floor (sqrt 1000)],
Line 180: Line 334:
 
</haskell>
 
</haskell>
   
== [http://projecteuler.net/index.php?section=view&id=40 Problem 40] ==
+
== [http://projecteuler.net/index.php?section=problems&id=40 Problem 40] ==
 
Finding the nth digit of the fractional part of the irrational number.
 
Finding the nth digit of the fractional part of the irrational number.
   
Line 189: Line 343:
 
d j = Data.Char.digitToInt (n !! (j-1))
 
d j = Data.Char.digitToInt (n !! (j-1))
 
</haskell>
 
</haskell>
 
[[Category:Tutorials]]
 
[[Category:Code]]
 

Latest revision as of 09:03, 19 September 2014

Problem 31

Investigating combinations of English currency denominations.

Solution:

The most straightforward solution, following the logical structure closely, actually generating the solutions (won't be the optimal one obviously by a long shot, but serves as an illustration, a development aid... runs in under 0.5 second on Ideone). We can make up the sum either with or without the most valuable coin:

p31 = length $ g 200 [200,100,50,20,10,5,2,1]
  where
    g 0 _  = [[]]    -- exactly one way to get 0 sum, with no coins at all
    g n [] = []      -- no way to sum up no coins to a non-zero sum
    g n coins@(c:rest) 
      | c <= n = map (c:) (g (n-c) coins)  -- with the top coin
                  ++ g n rest
      | otherwise = g n rest               -- without it

Here is the naive doubly recursive solution. Speed would be greatly improved by use of memoization, dynamic programming, or the closed form.

problem_31 = ways [1,2,5,10,20,50,100,200] !!200
  where ways [] = 1 : repeat 0
        ways (coin:coins) =n 
          where n = zipWith (+) (ways coins) (replicate coin 0 ++ n)

A beautiful solution, making usage of laziness and recursion to implement a dynamic programming scheme, blazingly fast despite actually generating the combinations and not only counting them :

coins = [1,2,5,10,20,50,100,200]

combinations = foldl (\without p ->
                          let (poor,rich) = splitAt p without
                              with = poor ++ zipWith (++) (map (map (p:)) with)
                                                          rich
                          in with
                     ) ([[]] : repeat [])

problem_31 = length $ combinations coins !! 200

The above may be a beautiful solution, but I couldn't understand it without major mental gymnastics. I would like to offer the following, which I hope will be easier to follow for ordinary mentats -- HenryLaxen 2008-02-22

coins = [1,2,5,10,20,50,100,200]

withcoins 1 x = [[x]]
withcoins n x = concatMap addCoin [0 .. x `div` coins!!(n-1)]
  where addCoin k = map (++[k]) (withcoins (n-1) (x - k*coins!!(n-1)) )

problem_31 = length $ withcoins (length coins) 200

The program above can be slightly modified as shown below so it just counts the combinations without generating them.

coins = [1,2,5,10,20,50,100,200]

countCoins 1 _ = 1
countCoins n x = sum $ map addCoin [0 .. x `div` coins !! pred n]
  where addCoin k = countCoins (pred n) (x - k * coins !! pred n)

problem_31 = countCoins (length coins) 200

Problem 32

Find the sum of all numbers that can be written as pandigital products.

Solution:

import Control.Monad

combs 0 xs = [([],xs)]
combs n xs = [(y:ys,rest) | y <- xs, (ys,rest) <- combs (n-1) (delete y xs)]

l2n :: (Integral a) => [a] -> a
l2n = foldl' (\a b -> 10*a+b) 0

swap (a,b) = (b,a)

explode :: (Integral a) => a -> [a]
explode = unfoldr (\a -> if a==0 then Nothing else Just . swap $ quotRem a 10)

pandigiticals =
  nub $ do (beg,end) <- combs 5 [1..9]
           n <- [1,2]
           let (a,b) = splitAt n beg
               res = l2n a * l2n b
           guard $ sort (explode res) == end
           return res

problem_32 = sum pandigiticals

Problem 33

Discover all the fractions with an unorthodox cancelling method.

Solution:

import Data.Ratio
problem_33 = denominator . product $ rs
{-
 xy/yz = x/z
(10x + y)/(10y+z) = x/z
9xz + yz = 10xy
 -}
rs = [(10*x+y)%(10*y+z) | x <- t, 
                          y <- t, 
                          z <- t,
                          x /= y ,
                          (9*x*z) + (y*z) == (10*x*y)]
  where t = [1..9]

That is okay, but why not let the computer do the thinking for you? Isn't this a little more directly expressive of the problem? -- HenryLaxen 2008-02-34

import Data.Ratio
problem_33 = denominator $ product 
             [ a%c | a<-[1..9], b<-[1..9], c<-[1..9],
                     isCurious a b c, a /= b && a/= c]
   where isCurious a b c = ((10*a+b)%(10*b+c)) == (a%c)

Problem 34

Find the sum of all numbers which are equal to the sum of the factorial of their digits.

Solution:

import Data.Char
problem_34 = sum [ x | x <- [3..100000], x == facsum x ]
    where facsum = sum . map (product . enumFromTo 1 . digitToInt) . show

Another way:

import Data.Array
import Data.List

{-

The key comes in realizing that N*9! < 10^N when N >= 9, so we
only have to check up to 9 digit integers.  The other key is
that addition is commutative, so we only need to generate
combinations (with duplicates) of the sums of the various
factorials.  These sums are the only potential "curious" sums.

-}

fac n = a!n
  where a = listArray (0,9)  (1:(scanl1 (*) [1..9]))

-- subsets of size k, including duplicates
combinationsOf 0 _ = [[]]
combinationsOf _ [] = []
combinationsOf k (x:xs) = map (x:) 
  (combinationsOf (k-1) (x:xs)) ++ combinationsOf k xs

intToList n = reverse $ unfoldr 
  (\x -> if x == 0 then Nothing else Just (x `mod` 10, x `div` 10)) n

isCurious (n,l) =  sort (intToList n) == l

-- Turn a list into the sum of the factorials of the digits
factorialSum l = sum $ map fac l

possiblyCurious = map (\z -> (factorialSum z,z)) 
curious n = filter isCurious $ possiblyCurious $ combinationsOf n [0..9]
problem_34 = sum $ (fst . unzip) $ concatMap curious [2..9]

(The wiki formatting is messing up the unzip">unzip line above, it is correct in the version I typed in. It should of course just be fst . unzip)

Problem 35

How many circular primes are there below one million?

Solution:

import Data.List (tails, (\\))
 
primes :: [Integer]
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
 
primeFactors :: Integer -> [Integer]
primeFactors n = factor n primes
    where
        factor _ [] = []
        factor m (p:ps) | p*p > m        = [m]
                        | m `mod` p == 0 = p : factor (m `div` p) (p:ps)
                        | otherwise      = factor m ps
 
isPrime :: Integer -> Bool
isPrime 1 = False
isPrime n = case (primeFactors n) of
                (_:_:_)   -> False
                _         -> True
 
permutations :: Integer -> [Integer]
permutations n = take l $ map (read . take l) $ tails $ take (2*l -1) $ cycle s
    where
        s = show n
        l = length s
 
circular_primes :: [Integer] -> [Integer]
circular_primes []     = []
circular_primes (x:xs)
    | all isPrime p = x :  circular_primes xs
    | otherwise     = circular_primes xs
    where
        p = permutations x
 
problem_35 :: Int
problem_35 = length $ circular_primes $ takeWhile (<1000000) primes

Using isPrime from above, and observing that one that can greatly reduce the search space because no circular prime can contain an even number, nor a 5, since eventually such a digit will be at the end of the number, and hence composite, we get: (HenryLaxen 2008-02-27)

import Control.Monad (replicateM)

canBeCircularPrimeList = [1,3,7,9]

listToInt n = foldl (\x y -> 10*x+y) 0 n
rot n l = y ++ x where (x,y) = splitAt n l
allrots l = map (\x -> rot x l) [0..(length l)-1]
isCircular l =  all (isPrime . listToInt) $ allrots l
circular 1 = [[2],[3],[5],[7]]  -- a slightly special case
circular n = filter isCircular $ replicateM n canBeCircularPrimeList

problem_35 = length $ concatMap circular [1..6]


Problem 36

Find the sum of all numbers less than one million, which are palindromic in base 10 and base 2.

Solution:

import Numeric
import Data.Char
 
showBin = flip (showIntAtBase 2 intToDigit) ""
 
isPalindrome x = x == reverse x
 
problem_36 = sum [x | x <- [1,3..1000000], isPalindrome (show x), isPalindrome (showBin x)]

Problem 37

Find the sum of all eleven primes that are both truncatable from left to right and right to left.

Solution:

import Data.List (tails, inits, nub)
 
primes :: [Integer]
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
 
primeFactors :: Integer -> [Integer]
primeFactors n = factor n primes
    where
        factor _ [] = []
        factor m (p:ps) | p*p > m        = [m]
                        | m `mod` p == 0 = p : factor (m `div` p) (p:ps)
                        | otherwise      = factor m ps
 
isPrime :: Integer -> Bool
isPrime 1 = False
isPrime n = case (primeFactors n) of
                (_:_:_)   -> False
                _         -> True
 
truncs :: Integer -> [Integer]
truncs n = nub . map read $ (take l . tail . tails) s ++ (take l . tail . inits) s
    where
        l = length s - 1
        s = show n
 
problem_37 = sum $ take 11 [x | x <- dropWhile (<=9) primes, all isPrime (truncs x)]

Or, more cleanly:

import Data.Numbers.Primes (primes, isPrime)

test' :: Int -> Int -> (Int -> Int -> Int) -> Bool
test' n d f
    | d > n = True
    | otherwise = isPrime (f n d) && test' n (10*d) f

test :: Int -> Bool
test n = test' n 10 (mod) && test' n 10 (div)

problem_37 = sum $ take 11 $ filter test $ filter (>7) primes


Problem 38

What is the largest 1 to 9 pandigital that can be formed by multiplying a fixed number by 1, 2, 3, ... ?

Solution:

import Data.List

mult n i vs 
    | length (concat vs) >= 9 = concat vs
    | otherwise               = mult n (i+1) (vs ++ [show (n * i)])

problem_38 :: Int
problem_38 = maximum . map read . filter ((['1'..'9'] ==) . sort) 
               $ [mult n 1 [] | n <- [2..9999]]

Problem 39

If p is the perimeter of a right angle triangle, {a, b, c}, which value, for p ≤ 1000, has the most solutions?

Solution: We use the well known formula to generate primitive Pythagorean triples. All we need are the perimeters, and they have to be scaled to produce all triples in the problem space.

problem_39 = head $ perims !! indexMax
    where  perims = group
                    $ sort [n*p | p <- pTriples, n <- [1..1000 `div` p]]
           counts = map length perims
           Just indexMax = elemIndex (maximum counts) $ counts
           pTriples = [p |
                       n <- [1..floor (sqrt 1000)],
                       m <- [n+1..floor (sqrt 1000)],
                       even n || even m,
                       gcd n m == 1,
                       let a = m^2 - n^2,
                       let b = 2*m*n,
                       let c = m^2 + n^2,
                       let p = a + b + c,
                       p < 1000]

Problem 40

Finding the nth digit of the fractional part of the irrational number.

Solution:

problem_40 = (d 1)*(d 10)*(d 100)*(d 1000)*(d 10000)*(d 100000)*(d 1000000)
    where n = concat [show n | n <- [1..]]
          d j = Data.Char.digitToInt (n !! (j-1))