|
|
Line 1: |
Line 1: |
− | == [http://projecteuler.net/index.php?section=problems&id=41 Problem 41] ==
| + | Do them on your own! |
− | What is the largest n-digit pandigital prime that exists?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− | isprime a = isprimehelper a primes
| |
− | isprimehelper a (p:ps)
| |
− | | a == 1 = False
| |
− | | p*p > a = True
| |
− | | a `mod` p == 0 = False
| |
− | | otherwise = isprimehelper a ps
| |
− | primes = 2 : filter isprime [3,5..]
| |
− | problem_41 =
| |
− | head.filter isprime.filter fun $ [7654321,7654320..]
| |
− | where
| |
− | fun =(=="1234567").sort.show
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=42 Problem 42] ==
| |
− | How many triangle words can you make using the list of common English words?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Char
| |
− | trilist = takeWhile (<300) (scanl1 (+) [1..])
| |
− | wordscore xs = sum $ map (subtract 64 . ord) xs
| |
− | problem_42 megalist=
| |
− | length [ wordscore a |
| |
− | a <- megalist,
| |
− | elem (wordscore a) trilist
| |
− | ]
| |
− | main=do
| |
− | f<-readFile "words.txt"
| |
− | let words=read $"["++f++"]"
| |
− | print $problem_42 words
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=43 Problem 43] ==
| |
− | Find the sum of all pandigital numbers with an unusual sub-string divisibility property.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− | l2n :: (Integral a) => [a] -> a
| |
− | l2n = foldl' (\a b -> 10*a+b) 0
| |
− |
| |
− | swap (a,b) = (b,a)
| |
− |
| |
− | explode :: (Integral a) => a -> [a]
| |
− | explode =
| |
− | unfoldr (\a -> if a==0 then Nothing else Just $ swap $ quotRem a 10)
| |
− | problem_43 = sum . map l2n . map (\s -> head ([0..9] \\ s):s)
| |
− | . filter (elem 0) . genSeq [] $ [17,13,11,7,5,3,2]
| |
− | | |
− | mults mi ma n = takeWhile (< ma) $ dropWhile (<mi) $ iterate (+n) n
| |
− |
| |
− | sequ xs ys = tail xs == init ys
| |
− |
| |
− | addZ n xs = replicate (n - length xs) 0 ++ xs
| |
− |
| |
− | genSeq [] (x:xs) = genSeq
| |
− | (filter (not . doub)
| |
− | $ map (addZ 3 . reverse . explode) $ mults 9 1000 x)
| |
− | xs
| |
− | genSeq ys (x:xs) =
| |
− | genSeq (do
| |
− | m <- mults 9 1000 x
| |
− | let s = addZ 3 . reverse . explode $ m
| |
− | y <- filter (sequ s . take 3) $ filter (not . elem (head s)) ys
| |
− | return (head s:y)
| |
− | ) xs
| |
− | genSeq ys [] = ys
| |
− | | |
− | doub xs = nub xs /= xs
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=44 Problem 44] ==
| |
− | Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Set
| |
− | problem_44 =
| |
− | head solutions
| |
− | where
| |
− | solutions =
| |
− | [a-b |
| |
− | a <- penta,
| |
− | b <- takeWhile (<a) penta,
| |
− | isPenta (a-b),
| |
− | isPenta (b+a)
| |
− | ]
| |
− | isPenta = (`member` fromList penta)
| |
− | penta = [(n * (3*n-1)) `div` 2 | n <- [1..5000]]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=45 Problem 45] ==
| |
− | After 40755, what is the next triangle number that is also pentagonal and hexagonal?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | isPent n =
| |
− | (af == 0) && ai `mod` 6 == 5
| |
− | where
| |
− | (ai, af) = properFraction $ sqrt $ 1 + 24 * (fromInteger n)
| |
− |
| |
− | problem_45 = head [x | x <- scanl (+) 1 [5,9..], x > 40755, isPent x]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=46 Problem 46] ==
| |
− | What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
| |
− | | |
− | Solution:
| |
− | | |
− | This solution is inspired by exercise 3.70 in ''Structure and Interpretation of Computer Programs'', (2nd ed.).
| |
− | | |
− | millerRabinPrimality on the [[Prime_numbers]] page
| |
− | | |
− | <haskell>
| |
− | import Data.List
| |
− | isPrime x
| |
− | |x==3=True
| |
− | |otherwise=millerRabinPrimality x 2
| |
− | problem_46 =
| |
− | find (\x -> not (isPrime x) && check x) [3,5..]
| |
− | where
| |
− | check x =
| |
− | not $ any isPrime $takeWhile (>0) $ map (\y -> x - 2 * y * y) [1..]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=47 Problem 47] ==
| |
− | Find the first four consecutive integers to have four distinct primes factors.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− | problem_47 = find (all ((==4).snd)) . map (take 4) . tails
| |
− | . zip [1..] . map (length . factors) $ [1..]
| |
− | fstfac x = [(head a ,length a)|a<-group$primeFactors x]
| |
− | fac [(x,y)]=[x^a|a<-[0..y]]
| |
− | fac (x:xs)=[a*b|a<-fac [x],b<-fac xs]
| |
− | factors x=fac$fstfac x
| |
− | primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
| |
− | | |
− | primeFactors n = factor n primes
| |
− | where
| |
− | factor _ [] = []
| |
− | factor m (p:ps) | p*p > m = [m]
| |
− | | m `mod` p == 0 = p : [m `div` p]
| |
− | | otherwise = factor m ps
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=48 Problem 48] ==
| |
− | Find the last ten digits of 1<sup>1</sup> + 2<sup>2</sup> + ... + 1000<sup>1000</sup>.
| |
− | | |
− | Solution:
| |
− | If the problem were more computationally intensive, [http://en.wikipedia.org/wiki/Modular_exponentiation modular exponentiation] might be appropriate. With this problem size the naive approach is sufficient.
| |
− | | |
− | powMod on the [[Prime_numbers]] page
| |
− | | |
− | <haskell>
| |
− | problem_48 = flip mod limit$sum [powMod limit n n | n <- [1..1000]]
| |
− | where
| |
− | limit=10^10
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=49 Problem 49] ==
| |
− | Find arithmetic sequences, made of prime terms, whose four digits are permutations of each other.
| |
− | | |
− | Solution:
| |
− | millerRabinPrimality on the [[Prime_numbers]] page
| |
− | | |
− | <haskell>
| |
− | import Control.Monad
| |
− | import Data.List
| |
− | isPrime x
| |
− | |x==3=True
| |
− | |otherwise=millerRabinPrimality x 2
| |
− |
| |
− | primes4 = takeWhile (<10000) $ dropWhile (<1000) primes
| |
− | | |
− | problem_49 = do
| |
− | a <- primes4
| |
− | b <- dropWhile (<= a) primes4
| |
− | guard ((sort $ show a) == (sort $ show b))
| |
− | let c = 2 * b - a
| |
− | guard (c < 10000)
| |
− | guard ((sort $ show a) == (sort $ show c))
| |
− | guard $ isPrime c
| |
− | return (a, b, c)
| |
− |
| |
− | primes = 2 : filter (\x -> isPrime x ) [3..]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=problems&id=50 Problem 50] ==
| |
− | Which prime, below one-million, can be written as the sum of the most consecutive primes?
| |
− | | |
− | Solution:
| |
− | (prime and isPrime not included)
| |
− | | |
− | <haskell>
| |
− | import Control.Monad
| |
− | findPrimeSum ps
| |
− | | isPrime sumps = Just sumps
| |
− | | otherwise = findPrimeSum (tail ps) `mplus` findPrimeSum (init ps)
| |
− | where
| |
− | sumps = sum ps
| |
− | | |
− | problem_50 = findPrimeSum $ take 546 primes
| |
− | </haskell>
| |