Euler problems/41 to 50

From HaskellWiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Problem 41

What is the largest n-digit pandigital prime that exists?

Solution:

problem_41 = undefined

Problem 42

How many triangle words can you make using the list of common English words?

Solution:

problem_42 = undefined

Problem 43

Find the sum of all pandigital numbers with an unusual sub-string divisibility property.

Solution:

problem_43 = undefined

Problem 44

Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

Solution:

problem_44 = undefined

Problem 45

After 40755, what is the next triangle number that is also pentagonal and hexagonal?

Solution:

problem_45 =  head . dropWhile (<= 40755) $ match tries (match pents hexes)
    where match (x:xs) (y:ys)
              | x < y  = match xs (y:ys)
              | y < x  = match (x:xs) ys
              | otherwise = x : match xs ys
          tries = [n*(n+1) `div` 2   | n <- [1..]]
          pents = [n*(3*n-1) `div` 2 | n <- [1..]]
          hexes = [n*(2*n-1)         | n <- [1..]]

Problem 46

What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?

Solution:

This solution is inspired by exercise 3.70 in Structure and Interpretation of Computer Programs, (2nd ed.).

problem_46 = head $ oddComposites `orderedDiff` gbSums

oddComposites = filter ((>1) . length . primeFactors) [3,5..]

gbSums = map gbWeight $ weightedPairs gbWeight primes [2*n*n | n <- [1..]]
gbWeight (a,b) = a + b

weightedPairs w (x:xs) (y:ys) =
    (x,y) : mergeWeighted w (map ((,)x) ys) (weightedPairs w xs (y:ys))

mergeWeighted w (x:xs)  (y:ys)
    | w x <= w y  = x : mergeWeighted w xs (y:ys)
    | otherwise   = y : mergeWeighted w (x:xs) ys

x `orderedDiff` [] = x
[] `orderedDiff` y = []
(x:xs) `orderedDiff` (y:ys)
    | x < y     = x : xs `orderedDiff` (y:ys)
    | x > y     = (x:xs) `orderedDiff` ys
    | otherwise = xs `orderedDiff` ys

Problem 47

Find the first four consecutive integers to have four distinct primes factors.

Solution:

problem_47 = undefined

Problem 48

Find the last ten digits of 11 + 22 + ... + 10001000.

Solution: If the problem were more computationally intensive, modular exponentiation might be appropriate. As it is, ghci will return the result using the naive approach almost instantly.

problem_48 = sum [n^n | n <- [1..1000]] `mod` 10^10

Problem 49

Find arithmetic sequences, made of prime terms, whose four digits are permutations of each other.

Solution:

problem_49 = undefined

Problem 50

Which prime, below one-million, can be written as the sum of the most consecutive primes?

Solution:

problem_50 = undefined