Euler problems/61 to 70
From HaskellWiki
(→Problem 70) 

(9 intermediate revisions by 3 users not shown) 
Latest revision as of 18:36, 9 September 2011
Contents 
[edit] 1 Problem 61
Find the sum of the only set of six 4digit figurate numbers with a cyclic property.
Solution:
import Data.List permute [] = [[]] permute xs = concatMap (\x > map (x:) $ permute $ delete x xs) xs figurates n xs = extract $ concatMap (gather (map poly xs)) $ map (:[]) $ poly n where gather [xs] (v:vs) = let v' = match xs v in if v' == [] then [] else map (:v:vs) v' gather (xs:xss) (v:vs) = let v' = match xs v in if v' == [] then [] else concatMap (gather xss) $ map (:v:vs) v' match xs (_,v) = let p = (v `mod` 100)*100 in sublist (p+10,p+100) xs sublist (s,e) = takeWhile (\(_,x) > x<e) . dropWhile (\(_,x) > x<s) link ((_,x):xs) = x `mod` 100 == (snd $ last xs) `div` 100 diff (x:y:xs) = if fst x /= fst y then diff (y:xs) else False diff [x] = True extract = filter diff . filter link poly m = [(n, x)  (n, x) < zip [1..] $ takeWhile (<10000) $ scanl (+) 1 [m1,2*m3..], 1010 < x, x `mod` 100 > 9] problem_61 = sum $ map snd $ head $ concatMap (figurates 3) $ permute [4..8]
[edit] 2 Problem 62
Find the smallest cube for which exactly five permutations of its digits are cube.
Solution:
import Data.List import Data.Maybe a = map (^3) [0..10000] b = map (sort . show) a c = filter ((==5) . length) . group . sort $ b Just d = elemIndex (head (head c)) b problem_62 = toInteger d^3
[edit] 3 Problem 63
How many ndigit positive integers exist which are also an nth power?
Solution:
problem_63=length[x^yx<[1..9],y<[1..22],y==(length$show$x^y)]
[edit] 4 Problem 64
How many continued fractions for N ≤ 10000 have an odd period?
Solution:
import Data.List problem_64 =length $ filter solve $ [2..9999] \\ (map (^2) [2..100]) solve n = even $ length $ cont n 0 1 cont :: Int > Int > Int > [Int] cont r n d = m : rest where m = (truncate (sqrt (fromIntegral r)) + n) `div` d a = n  d * m rest  d == 1 && n /= 0 = []  otherwise = cont r (a) ((r  a ^ 2) `div` d)
[edit] 5 Problem 65
Find the sum of digits in the numerator of the 100th convergent of the continued fraction for e.
Solution:
import Data.Char import Data.Ratio e = 2 : concat [ [1, 2*i, 1]  i < [1..] ] fraction [x] = x%1 fraction (x:xs) = x%1 + 1/(fraction xs) problem_65 = sum $ map digitToInt $ show $ numerator $ fraction $ take 100 e
[edit] 6 Problem 66
Investigate the Diophantine equation x^{2} − Dy^{2} = 1.
Solution:
intSqrt :: Integral a => a > a intSqrt n  n < 0 = error "intSqrt: negative n"  otherwise = f n where f x  y < x = f y  otherwise = x where y = (x + (n `quot` x)) `quot` 2 problem_66 = snd$maximum [ (x,d)  d < [1..1000], let b = intSqrt d, b*b /= d,  d can't be a perfect square let (x,_) = pell d b b ] pell d wd b = piter d wd b 0 1 0 1 1 0 piter d wd b i c l k m n  cn == 1 = (x, y)  otherwise = piter d wd bn (i+1) cn k u n v where yb = (wd+b) `div` c bn = yb*cb cn = (d(bn*bn)) `div` c yn  i == 0 = wd  otherwise = yb u = k*yn+l  u/v is the ith convergent of sqrt(d) v = n*yn+m (x,y)  odd (i+1) = (u*u+d*v*v, 2*u*v)  otherwise = (u,v)
[edit] 7 Problem 67
Using an efficient algorithm find the maximal sum in the triangle?
Solution:
problem_67 = readFile "triangle.txt" >>= print . solve . parse parse = map (map read . words) . lines solve = head . foldr1 step step [] [z] = [z] step (x:xs) (y:z:zs) = x + max y z : step xs (z:zs)
[edit] 8 Problem 68
What is the maximum 16digit string for a "magic" 5gon ring?
Solution:
import Data.List permute [] = [[]] permute list = concatMap (\(x:xs) > map (x:) (permute xs)) (take (length list) (unfoldr (\l@(x:xs) > Just (l, xs ++ [x])) list)) problem_68 = maximum $ map (concatMap show) poel where gon68 = [1..10] knip = (length gon68) `div` 2 (is,e:es) = splitAt knip gon68 extnodes = map (e:) $ permute es intnodes = map (\(p:ps) > zipWith (\ x y > [x, y]) (p:ps) (ps++[p])) $ permute is poel = [ concat hs  uitsteeksels < extnodes, organen < intnodes, let hs = zipWith (:) uitsteeksels organen, let subsom = map sum hs, length (nub subsom) == 1 ]
[edit] 9 Problem 69
Find the value of n ≤ 1,000,000 for which n/φ(n) is a maximum.
Solution:
{phi(n) = n*(11/p1)*(11/p2)*...*(11/pn) n/phi(n) = 1/(11/p1)*(11/p2)*...*(11/pn) (11/p) will be minimal for a small p and 1/(11/p) will then be maximal } primes=[2,3,5,7,11,13,17,19,23] problem_69= maximum [c b<tail $ inits primes, let c=product b, c<10^6 ]
Note: credit for arithmetic functions is due to David Amos.
[edit] 10 Problem 70
Investigate values of n for which φ(n) is a permutation of n.
Solution:
import Data.List import Data.Function isPerm a b = null $ show a \\ show b flsqr n x=x<(floor.sqrt.fromInteger) n pairs n1 = fst . minimumBy (compare `on` fn) $ [(m,pm)a<gena,b<genb,let m=a*b,n>m,let pm=mab+1,isPerm m pm] where n=fromInteger n1 gena = dropWhile (flsqr n)$ takeWhile (flsqr (2*n)) primes genb = dropWhile (flsqr (n `div` 2))$ takeWhile (flsqr n) primes fn (x,px) = fromIntegral x / (fromIntegral px) problem_70= pairs (10^7)