|
|
Line 1: |
Line 1: |
− | == [http://projecteuler.net/index.php?section=view&id=71 Problem 71] ==
| + | Do them on your own! |
− | Listing reduced proper fractions in ascending order of size.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | -- http://mathworld.wolfram.com/FareySequence.html
| |
− | import Data.Ratio ((%), numerator,denominator)
| |
− | fareySeq a b
| |
− | |da2<=10^6=fareySeq a1 b
| |
− | |otherwise=na
| |
− | where
| |
− | na=numerator a
| |
− | nb=numerator b
| |
− | da=denominator a
| |
− | db=denominator b
| |
− | a1=(na+nb)%(da+db)
| |
− | da2=denominator a1
| |
− | problem_71=fareySeq (0%1) (3%7)
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=72 Problem 72] ==
| |
− | How many elements would be contained in the set of reduced proper fractions for d ≤ 1,000,000?
| |
− | | |
− | Solution:
| |
− | | |
− | Using the [http://mathworld.wolfram.com/FareySequence.html Farey Sequence] method, the solution is the sum of phi (n) from 1 to 1000000.
| |
− | <haskell>
| |
− | groups=1000
| |
− | eulerTotient n = product (map (\(p,i) -> p^(i-1) * (p-1)) factors)
| |
− | where factors = fstfac n
| |
− | fstfac x = [(head a ,length a)|a<-group$primeFactors x]
| |
− | p72 n= sum [eulerTotient x|x <- [groups*n+1..groups*(n+1)]]
| |
− | problem_72 = sum [p72 x|x <- [0..999]]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=73 Problem 73] ==
| |
− | How many fractions lie between 1/3 and 1/2 in a sorted set of reduced proper fractions?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Array
| |
− | twix k = crude k - fd2 - sum [ar!(k `div` m) | m <- [3 .. k `div` 5], odd m]
| |
− | where
| |
− | fd2 = crude (k `div` 2)
| |
− | ar = array (5,k `div` 3) $
| |
− | ((5,1):[(j, crude j - sum [ar!(j `div` m) | m <- [2 .. j `div` 5]])
| |
− | | j <- [6 .. k `div` 3]])
| |
− | crude j =
| |
− | m*(3*m+r-2) + s
| |
− | where
| |
− | (m,r) = j `divMod` 6
| |
− | s = case r of
| |
− | 5 -> 1
| |
− | _ -> 0
| |
− |
| |
− | problem_73 = twix 10000
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=74 Problem 74] ==
| |
− | Determine the number of factorial chains that contain exactly sixty non-repeating terms.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.List
| |
− | explode 0 = []
| |
− | explode n = n `mod` 10 : explode (n `quot` 10)
| |
− |
| |
− | chain 2 = 1
| |
− | chain 1 = 1
| |
− | chain 145 = 1
| |
− | chain 40585 = 1
| |
− | chain 169 = 3
| |
− | chain 363601 = 3
| |
− | chain 1454 = 3
| |
− | chain 871 = 2
| |
− | chain 45361 = 2
| |
− | chain 872 = 2
| |
− | chain 45362 = 2
| |
− | chain x = 1 + chain (sumFactDigits x)
| |
− | makeIncreas 1 minnum = [[a]|a<-[minnum..9]]
| |
− | makeIncreas digits minnum = [a:b|a<-[minnum ..9],b<-makeIncreas (digits-1) a]
| |
− | p74=
| |
− | sum[div p6 $countNum a|
| |
− | a<-tail$makeIncreas 6 1,
| |
− | let k=digitToN a,
| |
− | chain k==60
| |
− | ]
| |
− | where
| |
− | p6=facts!! 6
| |
− | sumFactDigits = foldl' (\a b -> a + facts !! b) 0 . explode
| |
− | factorial n = if n == 0 then 1 else n * factorial (n - 1)
| |
− | digitToN = foldl' (\a b -> 10*a + b) 0 .dropWhile (==0)
| |
− | facts = scanl (*) 1 [1..9]
| |
− | countNum xs=ys
| |
− | where
| |
− | ys=product$map (factorial.length)$group xs
| |
− | problem_74= length[k|k<-[1..9999],chain k==60]+p74
| |
− | test = print $ [a|a<-tail$makeIncreas 6 0,let k=digitToN a,chain k==60]
| |
− | </haskell>
| |
− | == [http://projecteuler.net/index.php?section=view&id=75 Problem 75] ==
| |
− | Find the number of different lengths of wire can that can form a right angle triangle in only one way.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Array
| |
− |
| |
− | triplets =
| |
− | [p |
| |
− | n <- [2..706],
| |
− | m <- [1..n-1],
| |
− | gcd m n == 1,
| |
− | let p = 2 * (n^2 + m*n),
| |
− | odd (m + n),
| |
− | p <= 10^6
| |
− | ]
| |
− |
| |
− | hist bnds ns =
| |
− | accumArray (+) 0 bnds [(n, 1) |
| |
− | n <- ns,
| |
− | inRange bnds n
| |
− | ]
| |
− |
| |
− | problem_75 =
| |
− | length $ filter (\(_,b) -> b == 1) $ assocs arr
| |
− | where
| |
− | arr = hist (12,10^6) $ concatMap multiples triplets
| |
− | multiples n = takeWhile (<=10^6) [n, 2*n..]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=76 Problem 76] ==
| |
− | How many different ways can one hundred be written as a sum of at least two positive integers?
| |
− | | |
− | Solution:
| |
− | | |
− | Here is a simpler solution: For each n, we create the list of the number of partitions of n
| |
− | whose lowest number is i, for i=1..n. We build up the list of these lists for n=0..100.
| |
− | <haskell>
| |
− | build x = (map sum (zipWith drop [0..] x) ++ [1]) : x
| |
− | problem_76 = (sum $ head $ iterate build [] !! 100) - 1
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=77 Problem 77] ==
| |
− | What is the first value which can be written as the sum of primes in over five thousand different ways?
| |
− | | |
− | Solution:
| |
− | | |
− | Brute force but still finds the solution in less than one second.
| |
− | <haskell>
| |
− | counter = foldl (\without p ->
| |
− | let (poor,rich) = splitAt p without
| |
− | with = poor ++
| |
− | zipWith (+) with rich
| |
− | in with
| |
− | ) (1 : repeat 0)
| |
− |
| |
− | problem_77 =
| |
− | find ((>5000) . (ways !!)) $ [1..]
| |
− | where
| |
− | ways = counter $ take 100 primes
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=78 Problem 78] ==
| |
− | Investigating the number of ways in which coins can be separated into piles.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Array
| |
− | | |
− | partitions :: Array Int Integer
| |
− | partitions =
| |
− | array (0,1000000) $
| |
− | (0,1) :
| |
− | [(n,sum [s * partitions ! p|
| |
− | (s,p) <- zip signs $ parts n])|
| |
− | n <- [1..1000000]]
| |
− | where
| |
− | signs = cycle [1,1,(-1),(-1)]
| |
− | suite = map penta $ concat [[n,(-n)]|n <- [1..]]
| |
− | penta n = n*(3*n - 1) `div` 2
| |
− | parts n = takeWhile (>= 0) [n-x| x <- suite]
| |
− | | |
− | problem_78 :: Int
| |
− | problem_78 =
| |
− | head $ filter (\x -> (partitions ! x) `mod` 1000000 == 0) [1..]
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=79 Problem 79] ==
| |
− | By analysing a user's login attempts, can you determine the secret numeric passcode?
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Char (digitToInt, intToDigit)
| |
− | import Data.Graph (buildG, topSort)
| |
− | import Data.List (intersect)
| |
− |
| |
− | p79 file=
| |
− | (+0)$read . intersect graphWalk $ usedDigits
| |
− | where
| |
− | usedDigits = intersect "0123456789" $ file
| |
− | edges = concat . map (edgePair . map digitToInt) . words $ file
| |
− | graphWalk = map intToDigit . topSort . buildG (0, 9) $ edges
| |
− | edgePair [x, y, z] = [(x, y), (y, z)]
| |
− | edgePair _ = undefined
| |
− |
| |
− | problem_79 = do
| |
− | f<-readFile "keylog.txt"
| |
− | print $p79 f
| |
− | </haskell>
| |
− | | |
− | == [http://projecteuler.net/index.php?section=view&id=80 Problem 80] ==
| |
− | Calculating the digital sum of the decimal digits of irrational square roots.
| |
− | | |
− | Solution:
| |
− | <haskell>
| |
− | import Data.Char
| |
− | problem_80=
| |
− | sum [f x |
| |
− | a <- [1..100],
| |
− | x <- [intSqrt $ a * t],
| |
− | x * x /= a * t
| |
− | ]
| |
− | where
| |
− | t=10^202
| |
− | f = (sum . take 100 . map (flip (-) (ord '0') .ord) . show)
| |
− | </haskell>
| |