Exception

From HaskellWiki
Revision as of 15:00, 23 January 2008 by Lemming (talk | contribs) (monad transformer)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An exception denotes an unpredictable situation at runtime, like "out of disk storage", "read protected file", "user removed disk while reading", "syntax error in user input". These are situation which occur relatively seldom and thus their immediate handling would clutter the code which should describe the regular processing. Since exceptions must be expected at runtime there are also mechanisms for (selectively) handling them. (Control.Exception,try, Control.Exception.catch) Unfortunately Haskell's standard library names common exceptions of IO actions IOError and the module Control.Monad.Error is about exception handling not error handling. In general you should be very careful, not to mix up exceptions with errors. Actually, an unhandled exception is an error.

Implementation

The great thing about Haskell is, that it is not necessary to hard-wire the exception handling into the language. Everything is already there to implement definition and handling of exceptions nicely. See the implementation in Control.Monad.Error (and please, excuse the misleading name, for now).

First for non-monadic functions.

data ExAction e a =
     Success a
   | Exception e
   deriving (Show)

instance Monad (ExAction e) where
   return              =  Success
   Exception l >>= _   =  Exception l
   Success  r  >>= k   =  k r

throw :: e -> ExAction e a
throw = Exception

catch :: ExAction e a -> (e -> ExAction e a) -> ExAction e a
catch (Exception  l) h = h l
catch (Success r)    _ = Success r

Now we extend this monadic functions. This is not restricted to IO, but may also immediately used for non-deterministic algorithms implemented with List monad.

newtype ExActionT e m a =
   ExActionT {runExActionT :: m (ExAction e a)}

instance Monad m => Monad (ExActionT e m) where
   return   =  ExActionT . return . Success
   m >>= k  =  ExActionT $
      runExActionT m >>= \ a ->
         case a of
            Exception e -> return (Exception e)
            Success   r -> runExActionT (k r)

throwT :: Monad m => e -> ExActionT e m a
throwT = ExActionT . return . Exception

catchT :: Monad m =>
   ExActionT e m a -> (e -> ExActionT e m a) -> ExActionT e m a
catchT m h = ExActionT $
   runExActionT m >>= \ a ->
      case a of
         Exception l -> runExActionT (h l)
         Success   r -> return (Success r)

bracketT :: Monad m =>
   ExActionT e m h ->
   (h -> ExActionT e m ()) ->
   (h -> ExActionT e m a) ->
   ExActionT e m a
bracketT open close body =
   open >>= (\ h ->
      ExActionT $
         do a <- runExActionT (body h)
            runExActionT (close h)
            return a)


data IOException =
     DiskFull
   | FileDoesNotExist
   | ReadProtected
   | WriteProtected
   | NoSpaceOnDevice
   deriving (Show, Eq, Enum)

open :: FilePath -> ExActionT IOException IO Handle

close :: Handle -> ExActionT IOException IO ()

read :: Handle -> ExActionT IOException IO String

write :: Handle -> String -> ExActionT IOException IO ()

readText :: FilePath -> ExActionT IOException IO String
readText fileName =
   bracketT (open fileName) close $ \h ->
      read h


See also