# Haskell Quiz/Geodesic Dome Faces/Solution Jkramar

### From HaskellWiki

< Haskell Quiz | Geodesic Dome Faces(Difference between revisions)

m |
m |
||

Line 5: | Line 5: | ||

<haskell> | <haskell> | ||

− | import Prelude hiding (sum, foldr1, foldr, maximum, | + | import Prelude hiding (sum, foldr1, foldr, maximum, mapM_) |

import Control.Applicative | import Control.Applicative | ||

import Data.Foldable | import Data.Foldable | ||

Line 38: | Line 38: | ||

mmul :: (Num a) => V3 (V3 a) -> V3 (V3 a) -> V3 (V3 a) | mmul :: (Num a) => V3 (V3 a) -> V3 (V3 a) -> V3 (V3 a) | ||

mmul t = fmap$foldr1 (.+).(<*>t).fmap (.*) | mmul t = fmap$foldr1 (.+).(<*>t).fmap (.*) | ||

− | |||

− | |||

− | |||

-- chooses xs!!n gives the combinations of n elements from xs | -- chooses xs!!n gives the combinations of n elements from xs | ||

Line 46: | Line 43: | ||

chooses = foldr consider$[[]]:repeat [] where | chooses = foldr consider$[[]]:repeat [] where | ||

consider x cs = zipWith (flip (++)) cs$map (x:)<$>[]:cs | consider x cs = zipWith (flip (++)) cs$map (x:)<$>[]:cs | ||

− | |||

− | |||

− | |||

− | |||

− | |||

− | |||

-- inefficient function to generate all the positively-oriented faces of the | -- inefficient function to generate all the positively-oriented faces of the | ||

Line 57: | Line 48: | ||

faces :: (Real a) => [V3 a] -> [Tri a] | faces :: (Real a) => [V3 a] -> [Tri a] | ||

faces vs = filter isFace $ orient <$> tris vs where | faces vs = filter isFace $ orient <$> tris vs where | ||

+ | orient t@(V a b c) = if (signum$det t)==1 then t else V a c b | ||

+ | tris xs = (\[a,b,c]->V a b c) <$> (chooses xs!!3) | ||

farth (V a b c) = maximum.(dot ((a.-b) `cross` (a.-c))<$>) | farth (V a b c) = maximum.(dot ((a.-b) `cross` (a.-c))<$>) | ||

isFace t@(V a b c) = farth t [a,b,c] == farth t vs | isFace t@(V a b c) = farth t [a,b,c] == farth t vs | ||

Line 62: | Line 55: | ||

-- each triangle side is broken into n pieces, unlike in the problem statement, | -- each triangle side is broken into n pieces, unlike in the problem statement, | ||

-- where they use n+1 for some reason | -- where they use n+1 for some reason | ||

− | shatter :: ( | + | shatter :: (Fractional a) => Int -> Tri a -> [Tri a] |

shatter n t = mmul t'<$>coords where | shatter n t = mmul t'<$>coords where | ||

basis = V (V 1 0 0) (V 0 1 0) (V 0 0 1) | basis = V (V 1 0 0) (V 0 1 0) (V 0 0 1) | ||

Line 70: | Line 63: | ||

coords = (fmap fromIntegral<$>)<$>fwd++bwd | coords = (fmap fromIntegral<$>)<$>fwd++bwd | ||

− | geode :: ( | + | geode :: (RealFloat a) => [V3 a] -> Int -> [Tri a] |

− | geode vs n = fmap normize<$>(shatter n=<<faces vs) | + | geode vs n = fmap normize<$>(shatter n=<<faces vs) where |

+ | normize v = (1/sqrt (dot v v)).*v | ||

cyc :: V3 a -> [V3 a] | cyc :: V3 a -> [V3 a] | ||

Line 87: | Line 81: | ||

main :: IO () | main :: IO () | ||

− | main = mapM_ print (geode octahed | + | main = mapM_ print (geode octahed 51::[Tri Double]) |

</haskell> | </haskell> |

## Revision as of 20:05, 17 November 2008

This problem seems to be strongly IO-bound, so actually computing the geodesic faces is not too time-sensitive. Hence there is time for computing the faces from the vertices by trying each triple of vertices to check if it's a face. (In the problem statement, the data for each polyhedron includes a list of the faces, not just the vertices.)

Originally this program represented vectors with ordinary tuples, and in some places that was definitely more understandable. But of course it's more fun this way.

import Prelude hiding (sum, foldr1, foldr, maximum, mapM_) import Control.Applicative import Data.Foldable data V3 a = V !a !a !a deriving (Read,Show) instance Foldable V3 where foldr f x (V a b c) = f a$f b$f c x instance Functor V3 where fmap f (V a b c) = V (f a) (f b) (f c) instance Applicative V3 where pure a = V a a a V f g h <*> V a b c = V (f a) (g b) (h c) type Tri a = V3 (V3 a) (.+) :: (Num a) => V3 a -> V3 a -> V3 a (.+) = liftA2 (+) (.-) :: (Num a) => V3 a -> V3 a -> V3 a (.-) = liftA2 (-) (.*) :: (Num a) => a -> V3 a -> V3 a (.*) = fmap.(*) dot :: (Num a) => V3 a -> V3 a -> a dot = (sum.).liftA2 (*) cross :: (Num a) => V3 a -> V3 a -> V3 a cross (V x y z) (V x' y' z')=V (y*z'-z*y') (z*x'-x*z') (x*y'-y*x') det :: (Num a) => V3 (V3 a) -> a det (V a b c) = (a `cross` b) `dot` c -- matrix multiplication mmul :: (Num a) => V3 (V3 a) -> V3 (V3 a) -> V3 (V3 a) mmul t = fmap$foldr1 (.+).(<*>t).fmap (.*) -- chooses xs!!n gives the combinations of n elements from xs chooses :: [a] -> [[[a]]] chooses = foldr consider$[[]]:repeat [] where consider x cs = zipWith (flip (++)) cs$map (x:)<$>[]:cs -- inefficient function to generate all the positively-oriented faces of the -- triangle-faced polyhedron with vertices at vs faces :: (Real a) => [V3 a] -> [Tri a] faces vs = filter isFace $ orient <$> tris vs where orient t@(V a b c) = if (signum$det t)==1 then t else V a c b tris xs = (\[a,b,c]->V a b c) <$> (chooses xs!!3) farth (V a b c) = maximum.(dot ((a.-b) `cross` (a.-c))<$>) isFace t@(V a b c) = farth t [a,b,c] == farth t vs -- each triangle side is broken into n pieces, unlike in the problem statement, -- where they use n+1 for some reason shatter :: (Fractional a) => Int -> Tri a -> [Tri a] shatter n t = mmul t'<$>coords where basis = V (V 1 0 0) (V 0 1 0) (V 0 0 1) fwd = [(V k j (n-1-k-j).+) <$> basis|k<-[0..n-1], j<-[0..n-1-k]] bwd = [(V k j (n+1-k-j).-) <$> basis|k<-[1..n], j<-[1..n-k]] t' = ((1/fromIntegral n).*)<$>t coords = (fmap fromIntegral<$>)<$>fwd++bwd geode :: (RealFloat a) => [V3 a] -> Int -> [Tri a] geode vs n = fmap normize<$>(shatter n=<<faces vs) where normize v = (1/sqrt (dot v v)).*v cyc :: V3 a -> [V3 a] cyc (V a b c) = [V a b c, V b c a, V c a b] tetrahed :: (Floating a) => [V3 a] tetrahed = [V (x*sqrt 1.5) (-sqrt 2/3) (-1/3)|x<-[-1,1]]++ [V 0 (2*sqrt 2/3) (-1/3), V 0 0 1] octahed :: (Num a) => [V3 a] octahed = cyc =<< [V x 0 0|x<-[-1,1]] icosahed :: (Floating a) => [V3 a] icosahed = cyc =<< [V x (y*(1+sqrt 5/2)) 0|x<-[-1, 1], y<-[-1, 1]] main :: IO () main = mapM_ print (geode octahed 51::[Tri Double])