Shootout/Binary trees
Proposals[edit]
Port the Clean entry.
Proposed entry[edit]
Unboxes the strict fields
{-# OPTIONS -fbang-patterns -funbox-strict-fields #-}
--
-- The Great Computer Language Shootout
-- http://shootout.alioth.debian.org/
--
-- Contributed by Don Stewart
--
import System
import Data.Bits
import Text.Printf
data Tree = Nil | Node !Int Tree Tree
minN = 4
io s !n !t = printf "%s of depth %d\t check: %d\n" s n t
main = do
n <- getArgs >>= readIO . head
let maxN = max (minN + 2) n
stretchN = maxN + 1
-- stretch memory tree
let c = check (make 0 stretchN)
io "stretch tree" stretchN c
-- allocate a long lived tree
let long = make 0 maxN
-- allocate, walk, and deallocate many bottom-up binary trees
let vs = depth minN maxN
mapM_ (\((m,d,i)) -> io (show m ++ "\t trees") d i) vs
-- confirm the the long-lived binary tree still exists
io "long lived tree" maxN (check long)
-- generate many trees
depth :: Int -> Int -> [(Int,Int,Int)]
depth !d !m
| d <= m = (2*n,d,sumT d n 0) : depth (d+2) m
| otherwise = []
where !n = 1 `shiftL` (m - d + minN)
-- allocate and check lots of trees
sumT :: Int -> Int -> Int -> Int
sumT !d 0 t = t
sumT d i t = sumT d (i-1) (t + a + b)
where a = check (make i d)
b = check (make (-i) d)
-- traverse the tree, counting up the nodes
check :: Tree -> Int
check Nil = 0
check (Node i l r) = i + check l - check r
-- build a tree
make :: Int -> Int -> Tree
make i 0 = Node i Nil Nil
make i d = Node i (make (i2-1) d2) (make i2 d2)
where i2 = 2*i; d2 = d-1
Newly submitted to shootout[edit]
This is a trivial modification of Don Stewart's to add parallelism.
{-# OPTIONS -fbang-patterns -funbox-strict-fields #-}
--
-- The Computer Language Shootout
-- http://shootout.alioth.debian.org/
--
-- Contributed by Don Stewart
-- Modified by Stephen Blackheath to parallelize (a very tiny tweak)
--
import System
import Data.Bits
import Text.Printf
import Control.Parallel.Strategies
--
-- an artificially strict tree.
--
-- normally you would ensure the branches are lazy, but this benchmark
-- requires strict allocation.
--
data Tree = Nil | Node !Int !Tree !Tree
minN = 4
io s n t = printf "%s of depth %d\t check: %d\n" s n t
main = do
n <- getArgs >>= readIO . head
let maxN = max (minN + 2) n
stretchN = maxN + 1
-- stretch memory tree
let c = check (make 0 stretchN)
io "stretch tree" stretchN c
-- allocate a long lived tree
let !long = make 0 maxN
-- allocate, walk, and deallocate many bottom-up binary trees
let vs = parMap rnf id $ depth minN maxN
mapM_ (\((m,d,i)) -> io (show m ++ "\t trees") d i) vs
-- confirm the the long-lived binary tree still exists
io "long lived tree" maxN (check long)
-- generate many trees
depth :: Int -> Int -> [(Int,Int,Int)]
depth d m
| d <= m = (2*n,d,sumT d n 0) : depth (d+2) m
| otherwise = []
where n = 1 `shiftL` (m - d + minN)
-- allocate and check lots of trees
sumT :: Int -> Int -> Int -> Int
sumT d 0 t = t
sumT d i t = sumT d (i-1) (t + a + b)
where a = check (make i d)
b = check (make (-i) d)
-- traverse the tree, counting up the nodes
check :: Tree -> Int
check Nil = 0
check (Node i l r) = i + check l - check r
-- build a tree
make :: Int -> Int -> Tree
make i 0 = Node i Nil Nil
make i d = Node i (make (i2-1) d2) (make i2 d2)
where i2 = 2*i; d2 = d-1
(Old) Current entry[edit]
Ported to ghc 6.6 Submitted
{-# OPTIONS -fbang-patterns #-}
--
-- The Great Computer Language Shootout
-- http://shootout.alioth.debian.org/
--
-- Simon Marlow
-- Rewritten by Don Stewart
--
import System
import Data.Bits
import Text.Printf
data Tree = Nil | Node !Int Tree Tree
minDepth = 4
io s n t = printf "%s of depth %d\t check: %d\n" s n t
main = do
maxDepth <- getArgs >>= return . max (minDepth+2) . read . head :: IO Int
let stretch = make 0 (maxDepth+1)
io "stretch tree" (maxDepth+1) (check stretch)
let long = make 0 maxDepth
let vs = depth minDepth maxDepth
mapM_ (\(P m d i) -> io (show m ++ "\t trees") d i) vs
io "long lived tree" maxDepth (check long)
data P = P !Int !Int !Int
depth :: Int -> Int -> [P]
depth !d !m
| d > m = []
| otherwise = P (2*n) d (sumT n d 0) : depth (d+2) m
where
n = 1 `shiftL` (m - d + minDepth)
sumT :: Int -> Int -> Int -> Int
sumT !0 !d !t = t
sumT i d t = sumT (i-1) d (t + a + b)
where a = check (make i d)
b = check (make (-i) d)
make :: Int -> Int -> Tree
make !i !0 = Node i Nil Nil
make i d = Node i (make (i2-1) d2) (make i2 d2)
where
i2 = 2*i
d2 = d-1
check :: Tree -> Int
check Nil = 0
check (Node i l r) = i + check l - check r
Old entry[edit]
Shortest entry in any language, and almost twice as fast as old entry on my box.
Was speculatively disqualified.
{-# OPTIONS_GHC -fglasgow-exts -O2 -optc-O3 -funbox-strict-fields #-}
-- The Great Computer Language Shootout
-- http://shootout.alioth.debian.org/
-- Simon Marlow
-- Shortened by Don Stewart
import System; import Text.Printf; import Monad
data Tree = Nil | Node !Int Tree Tree
min' = 4 :: Int
main = do max' <- getArgs >>= return . max (min'+2) . read . head
printf "stretch tree of depth %d\t check: %d\n" (max'+1) (itemCheck $ make 0 (max'+1))
depthLoop min' max'
printf "long lived tree of depth %d\t check: %d\n" max' (itemCheck $ make 0 max')
depthLoop d m = when (d <= m) $ do
printf "%d\t trees of depth %d\t check: %d\n" (2*n) d (sumLoop n d 0)
depthLoop (d+2) m
where n = 2^(m - d + min')
sumLoop 0 d acc = acc
sumLoop k d acc = c `seq` sumLoop (k-1) d (acc + c + c')
where (c,c') = (itemCheck (make k d), itemCheck (make (-1*k) d))
make i (0::Int) = i `seq` Nil
make i d = Node i (make ((2*i)-1) (d-1)) (make (2*i) (d-1))
itemCheck Nil = 0
itemCheck (Node x l r) = x + itemCheck l - itemCheck r
Old Entry[edit]
{-# OPTIONS -O3 -optc-O3 #-}
-- The Great Computer Language Shootout
-- http://shootout.alioth.debian.org/
-- contributed by Einar Karttunen
import System
data Tree = Node Int Tree Tree | Nil
main = do [n] <- getArgs
let max' = max (min'+2) (read n)
showItemCheck (max'+1) (make 0 (max'+1)) "stretch tree of depth "
let longlived = make 0 max'
depthLoop min' max'
showItemCheck max' longlived "long lived tree of depth "
min' :: Int
min' = 4
showItemCheck d a s = putStrLn (s++show d++"\t check: "++show (itemCheck a))
showCheck i d check = putStrLn (show (2*i)++"\t trees of depth "++show d++"\t check: "++show check)
depthLoop d m | d > m = return ()
depthLoop d m = showCheck n d (sumLoop n d 0) >> depthLoop (d+2) m
where n = 2^(m - d + min')
sumLoop :: Int -> Int -> Int -> Int
sumLoop 0 d acc = acc
sumLoop k d acc = c `seq` sumLoop (k-1) d (acc + c + c')
where c = itemCheck (make k d)
c' = itemCheck (make (-1*k) d)
make :: Int -> Int -> Tree
make i 0 = Nil
make i d = Node i (make ((2*i)-1) (d-1)) (make (2*i) (d-1))
itemCheck Nil = 0
itemCheck (Node x l r) = x + itemCheck l - itemCheck r