User:WillNess
Monad is composable computation descriptions.
I like this one-liner:
-- infinite folding due to Richard Bird
-- double staged primes production due to Melissa O'Neill
-- tree folding idea Heinrich Apfelmus / Dave Bayer
primes = 2 : _Y ((3:) . gaps 5
. foldi (\(x:xs) -> (x:) . union xs) []
. map (\p-> [p*p, p*p+2*p..]))
_Y g = g (_Y g) -- multistage production via Y combinator
gaps k s@(c:t) -- == minus [k,k+2..] (c:t), k<=c,
| k < c = k : gaps (k+2) s -- fused for better performance
| otherwise = gaps (k+2) t -- k==c
foldi
is on Tree-like folds page. union
and more at Prime numbers.
The constructive definition of primes is the Sieve of Eratosthenes, P = N2\N2*N2 = N2\P*N2 :
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}}
using standard definition
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}} . . . or, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}} .
Trial division sieve is:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}}
If you're put off by self-referentiality, just replace Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{S}} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{T}} on the right-hand side of equations with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{N}_{2}} , as the ancient Greeks might or mightn't have done, as well.