Personal tools

User:Michiexile/MATH198

From HaskellWiki

< User:Michiexile(Difference between revisions)
Jump to: navigation, search
 
(7 intermediate revisions by one user not shown)
Line 1: Line 1:
 
==Course overview==
 
==Course overview==
  
Page is work in progress for background material for the Fall 2009 lecture course MATH198[http://coursework.stanford.edu/homepage/F09/F09-MATH-198-01.html] on Category Theory and Functional Programming that I am planning to give at Stanford University.
+
Page is the background material for the Fall 2009 lecture course MATH198[http://coursework.stanford.edu/homepage/F09/F09-MATH-198-01.html] on Category Theory and Functional Programming that I gave at Stanford University.
  
 
Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.
 
Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.
Line 33: Line 33:
 
** Functors.
 
** Functors.
 
** Category of categories.
 
** Category of categories.
 +
** Natural transformations.
  
 
* [[User:Michiexile/MATH198/Lecture 4]]
 
* [[User:Michiexile/MATH198/Lecture 4]]
** Natural transformations.
+
** Products, coproducts.
** Adjunctions.
+
** The power of dualization.
** Free and forgetful.
+
** The algebra of datatypes
 +
 
  
 
* [[User:Michiexile/MATH198/Lecture 5]]
 
* [[User:Michiexile/MATH198/Lecture 5]]
** The power of dualization.
 
 
** Limits, colimits.
 
** Limits, colimits.
** Products, coproducts.
+
 +
* [[User:Michiexile/MATH198/Lecture 6]]
 
** Equalizers, coequalizers.
 
** Equalizers, coequalizers.
 +
** Pushouts/pullbacks
 +
** Adjunctions.
 +
** Free and forgetful.
  
* [[User:Michiexile/MATH198/Lecture 6]]
+
 
** Monoids.
+
* [[User:Michiexile/MATH198/Lecture 7]]
 +
** Monoid objects.
 
** Monads.
 
** Monads.
 
** Triples.
 
** Triples.
** The Kleisli category.
+
** Kleisli category.
 
** Monad factorization.
 
** Monad factorization.
 
 
* [[User:Michiexile/MATH198/Lecture 7]]
 
** Recursion as a categorical construction.
 
** Recursive categories.
 
** Recursion as fixed points of monad algebras.
 
** Recursion using special morphisms.
 
*** Hylo-
 
*** Zygo-
 
*** et.c.
 
  
 
* [[User:Michiexile/MATH198/Lecture 8]]
 
* [[User:Michiexile/MATH198/Lecture 8]]
** Topos.
+
** Algebras over monads
** Exponentials.
+
** Algebras over endofunctors
** Power objects.
+
** Initial algebras and recursion
** Cartesian Closed Categories.
+
** Lambek's lemma
  
 
* [[User:Michiexile/MATH198/Lecture 9]]
 
* [[User:Michiexile/MATH198/Lecture 9]]
** Internal logic.
+
** Catamorphisms
 +
** Anamorphisms
 +
** Hylomorphisms
 +
** Metamorphisms
 +
** Paramorphisms
 +
** Apomorphisms
 +
** Properties of adjunctions, examples of adjunctions
  
 
* [[User:Michiexile/MATH198/Lecture 10]]
 
* [[User:Michiexile/MATH198/Lecture 10]]
** Review.
+
** Power objects
 +
** Classifying objects
 +
** Topoi
 +
** Internal logic

Latest revision as of 05:51, 24 July 2010

[edit] Course overview

Page is the background material for the Fall 2009 lecture course MATH198[1] on Category Theory and Functional Programming that I gave at Stanford University.

Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.


  • User:Michiexile/MATH198/Lecture 1
    • Category: Definition and examples.
    • Concrete categories.
      • Set.
      • Various categories capturing linear algebra.
    • Small categories.
      • Partial orders.
      • Monoids.
      • Finite groups.
    • Haskell-Curry isomorphism.




  • User:Michiexile/MATH198/Lecture 9
    • Catamorphisms
    • Anamorphisms
    • Hylomorphisms
    • Metamorphisms
    • Paramorphisms
    • Apomorphisms
    • Properties of adjunctions, examples of adjunctions