Personal tools

User:WillNess

From HaskellWiki

(Difference between revisions)
Jump to: navigation, search
(18 intermediate revisions by one user not shown)
Line 1: Line 1:
I am a newbie, interested in Haskell.
+
A perpetual Haskell newbie. I like ''[http://ideone.com/qpnqe this one-liner]'':
 
+
I like ''this'':
+
  
 
<haskell>
 
<haskell>
primes = 2 : 3 : ([5,7..] `minus`
+
--  infinite folding idea due to Richard Bird
                    foldi (\x:xs -> (x:) . union xs)
+
--  double staged production idea due to Melissa O'Neill
                          [[p*p,p*p+2*p..] | p <- tail primes])
+
--  tree folding idea Dave Bayer / improved tree structure
 +
--    Heinrich Apfelmus / simplified formulation Will Ness
 +
primes = 2 : _Y ((3:) . gaps 5 
 +
                      . foldi (\(x:xs) -> (x:) . union xs) []
 +
                      . map (\p-> [p*p, p*p+2*p..]))
 +
 
 +
_Y g = g (_Y g)  -- multistage production
 +
 
 +
gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
 +
  | k < c    = k : gaps (k+2) s    --    fused for better performance
 +
  | otherwise =    gaps (k+2) t    -- k==c
 
</haskell>
 
</haskell>
  
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]]. More at [[Prime numbers]].
+
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
 +
 
 +
The constructive definition of primes is the Sieve of Eratosthenes:
 +
 
 +
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>
 +
using standard definition
 +
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
 +
 
 +
Trial division sieve is:
 +
 
 +
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}</math>
 +
 
 +
If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>, but even ancient Greeks knew better.

Revision as of 09:30, 6 August 2013

A perpetual Haskell newbie. I like this one-liner:

--   infinite folding idea due to Richard Bird
--   double staged production idea due to Melissa O'Neill
--   tree folding idea Dave Bayer / improved tree structure 
--     Heinrich Apfelmus / simplified formulation Will Ness
primes = 2 : _Y ((3:) . gaps 5  
                      . foldi (\(x:xs) -> (x:) . union xs) []
                      . map (\p-> [p*p, p*p+2*p..])) 
 
_Y g = g (_Y g)  -- multistage production
 
gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
   | k < c     = k : gaps (k+2) s     --     fused for better performance
   | otherwise =     gaps (k+2) t     -- k==c

foldi is on Tree-like folds page. union and more at Prime numbers.

The constructive definition of primes is the Sieve of Eratosthenes:

\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}

using standard definition

\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}   . . . or,  \textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}   :) :) .

Trial division sieve is:

\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}

If you're put off by self-referentiality, just replace \mathbb{S} or \mathbb{T} on the right-hand side of equations with \mathbb{N}_{2}, but even ancient Greeks knew better.