Difference between revisions of "User:WillNess"

From HaskellWiki
Jump to navigation Jump to search
(var rename for uniformity)
m
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
I like ''[http://ideone.com/qpnqe this one-liner]'':
I'm interested in Haskell.
 
 
I like ''[http://ideone.com/qpnqe this]'':
 
   
 
<haskell>
 
<haskell>
-- inifinte folding idea due to Richard Bird
+
-- infinite folding due to Richard Bird
-- double staged production idea due to Melissa O'Neill
+
-- double staged primes production due to Melissa O'Neill
-- tree folding idea Dave Bayer / simplified formulation Will Ness
+
-- tree folding idea Heinrich Apfelmus / Dave Bayer
primes = 2 : g (fix g)
+
primes = 2 : _Y ((3:) . gaps 5
where
+
. foldi (\(x:xs) -> (x:) . union xs) []
g xs = 3 : gaps 5 (foldi (\(c:cs) -> (c:) . union cs)
+
. map (\p-> [p*p, p*p+2*p..]))
  +
[[x*x, x*x+2*x..] | x <- xs])
 
  +
_Y g = g (_Y g) -- multistage production via Y combinator
gaps k s@(c:t)
 
| k < c = k : gaps (k+2) s -- minus [k,k+2..] (c:t), k<=c
 
| True = gaps (k+2) t -- fused to avoid a space leak
 
   
fix g = xs where xs = g xs -- global defn to avoid space leak
+
gaps k s@(c:t) -- == minus [k,k+2..] (c:t), k<=c,
 
| k < c = k : gaps (k+2) s -- fused for better performance
 
| otherwise = gaps (k+2) t -- k==c
 
</haskell>
 
</haskell>
   
 
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
 
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
   
The math formula for Sieve of Eratosthenes,
+
The constructive definition of primes is the Sieve of Eratosthenes:
   
 
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>
 
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>
  +
using standard definition
where
 
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
+
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> .
   
Trial division sieve:
+
Trial division sieve is:
   
 
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}</math>
 
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}</math>
   
If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>.
+
If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>, but even ancient Greeks knew better.

Revision as of 11:45, 8 April 2015

I like this one-liner:

--   infinite folding due to Richard Bird
--   double staged primes production due to Melissa O'Neill
--   tree folding idea Heinrich Apfelmus / Dave Bayer 
primes = 2 : _Y ((3:) . gaps 5  
                      . foldi (\(x:xs) -> (x:) . union xs) []
                      . map (\p-> [p*p, p*p+2*p..])) 

_Y g = g (_Y g)  -- multistage production via Y combinator

gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
   | k < c     = k : gaps (k+2) s     --     fused for better performance
   | otherwise =     gaps (k+2) t     -- k==c

foldi is on Tree-like folds page. union and more at Prime numbers.

The constructive definition of primes is the Sieve of Eratosthenes:

using standard definition

  . . . or,   .

Trial division sieve is:

If you're put off by self-referentiality, just replace or on the right-hand side of equations with , but even ancient Greeks knew better.