
The Monad.Reader Issue 6

by Bernie Pope 〈bjpop@csse.unimelb.edu.au〉
and Dan Piponi 〈dpiponi@gmail.com〉
and Russell O’Connor 〈roconnor@alumni.uwaterloo.ca〉

Wouter Swierstra, editor.

1

Contents

Wouter Swierstra
Editorial 3

Bernie Pope
Getting a Fix from the Right Fold 5

Dan Piponi
Adventures in Classical-Land 17

Russell O’Connor
Assembly: Circular Programming with Recursive do 35

2

Editorial

by Wouter Swierstra 〈wss@cs.nott.ac.uk〉

It has been many months since the last issue of The Monad.Reader. Quite a few
things have changed since Issue Five. For better or for worse, we have moved from
wikipublishing to LATEX. I, for one, am pleased with the result.

This issue consists of three top-notch articles on a variety of subjects: Bernie
Pope explores just how expressive foldr is; Dan Piponi shows how to compile
proofs in classical logic to Haskell programs; Russell O’Connor has written an
embedded assembly language in Haskell.

Besides the authors, I would like to acknowledge several other people for their
contributions to this issue. Andres Löh provided a tremendous amount of TEXnical
support and wrote the class files. Peter Morris helped design the logo. Finally, I’d
like to thank Shae Erisson for starting up The Monad.Reader – without his limitless
enthusiasm for Haskell this magazine would never even have gotten off the ground.

3

Getting a Fix from the Right Fold

by Bernie Pope 〈bjpop@csse.unimelb.edu.au〉

What can you do with foldr? This is a seemingly innocent question that will
confront most functional programmers at some point in their life. I was recently
posed a “folding challenge” by a teaching colleague. The challenge was to write
dropWhile using foldr. We gave the challenge to our first-year students, and
awarded a small prize to the author of the first working solution.

I have since passed the challenge on to other “functional” friends, and the results
have been illuminating. That prompted me to write this article.

Introduction

We can compute the sum of a list of numbers with the following recursive function:

sum :: Num a => [a] -> a

sum [] = 0

sum (x:xs) = x + sum xs

With only a couple of small changes, we can transform it into a function that
computes the product of a list of numbers:

product :: Num a => [a] -> a

product [] = 1

product (x:xs) = x * product xs

There are two key differences between sum and product, apart from their names.
The first difference is the value which is returned in the base case. The second
difference is how the next value from the list is combined with the result from the
recursive call.

Rather than repeat the same recursive pattern over-and-over again, we can distill
its essence into a new, more general function. Thus we arrive at the definition of
foldr:

5

The Monad.Reader Issue 6

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr combine base [] = base

foldr combine base (x:xs) = combine x (foldr combine base xs)

Here we have the same pattern of recursion as found in sum and product, but the
value of the base case and the combining function of the recursive case are taken
as parameters, instead of being hard-coded. Effectively, foldr transforms a list
into some other expression, by replacing all occurrences of the list constructor (:)
with combine, and by replacing the empty list ([]) with base (if the end of the
list is ever reached).

Now we can define sum and product by instantiating foldr’s first two parame-
ters with appropriate values, like so:

sum = foldr (+) 0

product = foldr (*) 1

Lots of useful functions over lists follow this pattern of recursion, which makes
foldr widely applicable.

The challenge

As I said in the introduction, the challenge that was posed to me, and that I now
pose to you, is to write dropWhile using foldr. The same challenge has been
considered by other people in the literature, for example Richard Bird [1] sets
it as exercise 4.5.2 in his introductory textbook on functional programming, and
Graham Hutton [2] presents a solution (which we will see shortly) in his tutorial
on the fold functions.

For reference, here is a straightforward recursive definition of dropWhile:

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile predicate [] = []

dropWhile predicate list@(x:xs)

| predicate x = dropWhile predicate xs

| otherwise = list

It takes two arguments: a predicate and a list. It drops items from the front of
the list until it finds one which falsifies the predicate, after which it returns the
remainder of the list unchanged:

Hugs> dropWhile (<5) [1..10]

[5,6,7,8,9,10]

6

Bernie Pope: Getting a Fix from the Right Fold

I encourage you to try your hand at a solution. But before you do, some ground
rules are in order. Obviously it is not clear what it means to “use foldr”. I will
leave it to your better judgement as to what that entails, but trivial uses of foldr
will not do. For instance, the following is not a solution:

dwCheating = const dropWhile foldr

It is also highly desirable that the non-strictness of dropWhile is preserved. For
instance, it should still be able to return results on infinite lists:

Hugs> take 3 (dropWhile (<5) [1..])

[5,6,7]

A non-solution

One of the advantages of foldr is that we can get a long way into writing a
recursive list-processing function without having to think at all.1 We simply start
out with the following skeleton, and then fill in the blanks:

foo = foldr combine base

where

base = ...

combine next rec = ...

Naturally, we would like to apply this “join-the-dots” style of programming to
our challenge. A typical first approach looks something like this:

dwNoThinking predicate

= foldr combine base

where

base = []

combine next rec

| predicate next = rec

| otherwise = next : rec

Alas, it doesn’t work – though it is tantalisingly close. This function is equivalent
to filter (not . predicate), which is not the same as dropWhile predicate,
for example:

1That frees up our brains for more important tasks, like remembering the commands in VI or
Emacs.

7

The Monad.Reader Issue 6

Hugs> dropWhile even [2,3,4]

[3,4]

Hugs> dwNoThinking even [2,3,4]

[3]

The problem is in the second guarded equation of combine. Reasoning from the
original definition of dropWhile, we want the body of this clause to return the
remainder of the list unchanged. Unfortunately foldr does not make the value
of that list available directly. All we have is the head of the list (next) and the
result of the recursive call (rec), but rec is missing all the items of the tail of
the list which satisfy the predicate. So it is not always possible to reconstruct the
remainder of the list from next and rec.

Clearly dropWhile does not fit into the classic foldr pattern, which is why the
challenge is so interesting. We are going to have to work a bit harder than usual.

Solution one – working backwards with tuples

The first solution we will consider appears in Hutton’s fold tutorial.2 The non-
solution above shows that it is difficult to get foldr to compute the answer we
want directly. One way around this is to get foldr to compute something which
is close to the solution we want, and then, as a last step, post-process that into
the desired value:

dwBackwards predicate = fst . dwPairs predicate

dwPairs :: (a -> Bool) -> [a] -> ([a], [a])

dwPairs predicate

= foldr combine base

where

combine next (ys, xs)

| predicate next = (ys, next:xs)

| otherwise = (next:xs, next:xs)

base = ([], [])

The idea is to work backwards through the list. That is, dwPairs winds its way
down to the end of the list, and then builds up its answer – a pair of lists – from
right to left.

To understand the need for two lists, it is useful to consider an arbitrary list
element in its context:

2This was a popular approach amongst the people who tackled the challenge. My teaching
colleague had this solution in mind, as did the student who won the challenge in our class,
though neither had read Hutton’s paper.

8

Bernie Pope: Getting a Fix from the Right Fold

<prefix> item <suffix>

If item falsifies the predicate then it will always be included in the answer. How-
ever, if item satisfies the predicate, it will be kept in the answer only if there is at
least one item appearing in <prefix> which falsifies the predicate, otherwise it will
be dropped. When item is processed we don’t know which scenario will eventuate
because we haven’t looked at the items in prefix yet, so we keep track of two
lists: one which excludes the item, and one which includes it. If we later discover
an item in the prefix which falsifies the predicate, we throw away the list with
the dropped items, and copy over the list with the kept items. At the end of the
computation the first list in the pair contains the answer that we are looking for,
namely dropWhile predicate over our input list. As a final step, dwBackwards
selects that list from the pair.

Though this solution is rather clever, it does have a significant failing point: it is
too strict. By working backwards through the list it requires that the list is finite,
thus it fails to produce any output at all when the list is infinite:

Hugs> take 3 (dwBackwards (<5) [1..])

ERROR - Control stack overflow

The next couple of solutions avoid this unwanted strictness.

Solution two – taking the higher (order) road

The philosophy of this next solution is a play on the old meta-programming slogan:

Why write a function to solve a problem, when you can write a function
which returns a function to solve that problem?

One of the pitfalls of this challenge is the desire to have foldr return the answer
directly. Prior experience with foldr probably conditions us to think in this way.
But if we look at the type of foldr we see that there is no obligation for the
result to be a list; the result type is a variable, and that variable could well be
instantiated to a function type.

In this solution we get foldr to build up a function, which, when applied to the
input list, will return the desired result:3

3This solution was proposed independently by two people who received the challenge from me.
It must be pointed out that they both had considerable experience with Haskell, and thus
were likely to be quite comfortable with the nuances of higher-order programming.

9

The Monad.Reader Issue 6

dwHo predicate list

= (foldr combine base list) list -- brackets for emphasis only

where

base = id

combine next rec

| predicate next = rec . tail

| otherwise = id

It is best to view this function in action. Suppose we want to compute the result
of dwHo (<5) [1..10]. The call to foldr evaluates to the following function
composition:

id . tail . tail . tail . tail

that function is applied to the input list:

(id . tail . tail . tail . tail) [1,2,3,4,5,6,7,8,9,10]

which reduces to the desired result:

[5,6,7,8,9,10]

Clearly, this solution is an improvement over dwBackwards, because it is not
strict in the tail of the list:

Hugs> take 3 (dwHo (<5) [1..])

[5,6,7]

But it is not without fault. Notice that the size of the function returned by foldr

grows proportionally to the number of elements which are dropped from the front
of the list. As this function grows in size, it consumes heap space, and so we get
a space leak. Consider the evaluation of this expression: dwHo (<100000) [1..].
The problem is that we build up a big function composition first, and then apply
it to the list. It would be better to interleave the construction of that function and
its application to the list. That is the approach of the next solution.

Solution three – pulling in our tail to save space

This solution is a refinement of the previous one. It is based on the same higher-
order idea, but it avoids the space leak, by interleaving the construction and ap-
plication of the function returned by foldr.

We can arrive at this solution by applying some equational reasoning. Recall
the combine function from above. It returns a function as its result. We can make
this more explicit by giving it an extra argument by eta-expansion:

10

Bernie Pope: Getting a Fix from the Right Fold

combine next rec list

| predicate next = (rec . tail) list

| otherwise = id list

Note: this step does not change the behaviour of combine, it simply makes its
third argument explicit. The next step is to in-line, and thus eliminate, the calls
to (.) and id, like so:

combine next rec list

| predicate next = rec (tail list)

| otherwise = list

Now comes the trick where we pull in our tail. Remember that rec stands for the
result of the recursive application of foldr. Notice that it receives the expression
‘tail list’ as its argument. Effectively this delays the application of tail until
too late. What we would like to do is evaluate the call to tail before the recursive
call, thus consuming some of the list as the evaluation of foldr proceeds, rather
than waiting until the end. First, we in-line the call to tail:

combine next rec list

| predicate next = rec (case list of (_:xs) -> xs)

| otherwise = list

Then we push the call to rec inside the case expression:

combine next rec list

| predicate next = case list of (_:xs) -> rec xs

| otherwise = list

Voila! Space leak solved. A minor aesthetic improvement is to use pattern match-
ing sugar instead of a case statement, giving us our final version:

dwTailFree predicate list

= foldr combine base list list

where

base = id

combine next rec list@(_:xs)

| predicate next = rec xs

| otherwise = list

As it happens, the dwTailFree solution came to me in one of those rare eureka!
moments, at 3am in the morning as I lay in bed, worrying over the strictness of
dwBackwards. It wasn’t until some time later that I realised the connection with
dwHo. At first, I thought dwTailFree was the last thing that could possibly be
said about the challenge, but there was one final discovery waiting for me some
weeks later; that brings us to the fourth and final solution that I would like to
present to you.

11

The Monad.Reader Issue 6

Solution four – the fix that you’ve been waiting for

As I said, I didn’t think there was any more to be done with the challenge af-
ter dwTailFree came along. But it seems that the functional programming co-
processor in my head was quietly busying itself on the problem whenever any spare
cycles came its way.

At first it occurred to me that there were two ways of writing combine from
dwTailFree. The original way:

combine next rec list@(_:xs)

| predicate next = rec xs

| otherwise = list

and an alternate way:

combine _ rec list@(next:xs)

| predicate next = rec xs

| otherwise = list

The difference is where we get the next value from the input list. The alternate
version of combine got me thinking: in dwTailFree, the call to foldr doesn’t need
to look at the values in the first copy of the list. It simply uses the list structure
to provide some traction for the recursion. I soon realised that we don’t actually
need two copies of the same list, the first list can be any list at all, providing it is
sufficiently long to provide enough recursive calls.

Then it dawned on me – again as I lay in bed at night – dwTailFree is really
using foldr as a fixpoint combinator!

We can take a recursive function, such as dropWhile, and pull out its recursive
call as a parameter, thus eliminating the recursion:

dwNonRec :: ((a -> Bool) -> [a] -> [a]) -> (a -> Bool) -> [a] -> [a]

dwNonRec rec predicate [] = []

dwNonRec rec predicate list@(next:xs)

| predicate next = rec predicate xs

| otherwise = list

Note that the parameter rec now takes the place of the recursive call. We can
re-introduce the recursion using an explicit fixpoint operator:

dwFix :: (a -> Bool) -> [a] -> [a]

dwFix = fix dwNonRec

12

Bernie Pope: Getting a Fix from the Right Fold

where fix is a function that satisfies the equation ‘fix f = f (fix f)’. You may
notice that there is quite a lot of similarity between dwNonRec and the alternate
version of combine.4

So the question is, can we write fix using foldr? Yes, we can:

fix :: (a -> a) -> a

fix f = foldr (_ -> f) undefined (repeat undefined)

The undefined is just a gap-filler. The expression ‘repeat undefined’ generates
a list of unbounded length. We don’t care about its elements, so anything will
do. The fact that the list is infinite means that we get as many applications of
the f parameter as we need. Note that, because the list is infinite, foldr will
never reach the empty list, so it does not matter what value we give for the base
case argument. Nonetheless, the type-checker requires that the argument has a
polymorphic type, so it is quite convenient to use undefined here also.

To show that we have indeed implemented a suitable fixpoint function we can
apply a little equational reasoning on the body of fix. Here is a possible definition
of repeat:

repeat :: a -> [a]

repeat x = x : repeat x

We can unfold the application of repeat by one step:

foldr (_ -> f) undefined (undefined : repeat undefined)

Then we can unfold the application of foldr:

(_ -> f) undefined (foldr (_ -> f) undefined (repeat undefined))

The application of the lambda abstraction can be simplified by beta reduction:

f (foldr (_ -> f) undefined (repeat undefined))

From the original definition of fix we can see that this expression is equivalent to:

f (fix f)

which means that ‘fix f = f (fix f)’, as desired.

4Indeed, the rec parameter is a dead giveaway.

13

The Monad.Reader Issue 6

Conclusion

Now that we have fix defined in terms of foldr, a whole world of opportunities
arise, especially for devious exam questions!

In the end, it is not too surprising that we can get fix from foldr. Though it
certainly didn’t occur to me when I first was given the challenge by my colleague.

The next obvious question is what can you do with foldl? In particular, can
you get a fix from that? I’ll leave that as a homework exercise.

Postscript

Naturally, us Haskellers like to work lazily, and I must admit to being a little lazy
in my research on this topic. Having stumbled upon this foldr – fix connection,
the thought did occur to me that I should look it up in the literature. But I did
not take it any further. To be honest, I was a little bit worried that the notion
was so obvious that no one had bothered to even mention it before. Fortunately,
parallel evaluation saved the day. Wouter Swierstra passed a draft of my paper
to Graham Hutton, who pointed out that, to the best of his knowledge, Peter
Freyd [3] was the first to present the idea. He showed how to derive a fixpoint
operation from foldr and unfold. The repeat function I used in my definition of
fix can, of course, be written in terms of unfold. Interested readers might enjoy
the discussion in Section 2.6 of Hutton and Meijer’s paper [4], which is a bit more
accessible to functional programmers than Freyd’s original work.

Acknowledgments

I would like to thank the following people who have contributed to the challenge
and this paper. Tony Wirth, who posed the challenge to me, during a very en-
joyable semester of teaching. Harald Søndergaard, Ben Horsfall, Marco Lui, Bryn
Humberstone and Kevin Glynn, for attempting the challenge, and providing in-
teresting solutions. Wouter Swierstra, for editing the Monad Reader. Graham
Hutton, for reading an earlier draft and pointing out the reference to Freyd.

About the author

Bernie Pope is a postgraduate student within the Department of Computer Sci-
ence at the University of Melbourne. Amongst other things, he is the designer of
Buddha, a declarative debugger for Haskell. At the moment, he is spending three

14

months as an intern at Microsoft Research in Cambridge where he is working on
a procedural debugger to be integrated with GHC.

References

[1] Richard Bird. Introduction to Functional Programming Using Haskell. Prentice Hall
Europe, second edition (1998).

[2] Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal
of Functional Programming, 9(4):pages 355–372 (July 1999).

[3] Peter Freyd. Algebraically complete categories. In Proceedings of the 1990 Como
Category Theory Conference, volume 1488 of Lecture Notes In Math, pages 95–104.
Springer-Verlag (1990).

[4] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to
Exponential Types. In Proceedings of the 7th SIGPLAN-SIGARCH-WG2.8 Inter-
national Conference on Functional Programming and Computer Architecture, pages
324–333. ACM Press (June 1995).

Adventures in Classical-Land

by Dan Piponi 〈dpiponi@gmail.com〉

Many Haskell programmers are familiar with how the Curry-Howard isomorphism
shows that logical propositions correspond to types and their proofs correspond to
programs. But this correspondence only holds for intuitionistic logic where laws
such as double negation elimination fail to hold. There are many papers that dis-
cuss how proofs using classical logic, with double negative elimination, can also be
interpreted as programs, but some of the papers unfortunately assume considerable
prerequisites and are not easy to understand. This is a presentation of these ideas
in a (hopefully) less intimidating manner. And because this is written as literate
Haskell, along the way I build a simple compiler for a programming language that
supports double negative elimination allowing anyone to get their hands directly on
the objects described.

The Curry-Howard Lens

Suppose we know both that p is true and that p implies q. Then by the principle
of logic, as old as late antiquity, and known as modus ponens, we can deduce q.
Similarly, suppose we have a function f of type p -> q, and an object x of type
p, then by applying f to x we construct an object f x of type q. This, in essence,
is what the Curry-Howard isomorphism is about. Logical proofs translate into
programs with the propositions being translated into types. In the example we
have just given, a proof step using modus ponens translates into a program step
involving a function application. The isomorphism works so well that we can use
exactly the same notation to talk about proofs and programs. In particular, we
write u :: p to mean u is a proof of the proposition p, u::p to mean that u is an
object of type p, p → q to mean p implies q, and p -> q to mean the type of
functions mapping objects of type p to objects of type q. If we have x :: p and
f :: p → q then write fx :: q to mean the proof of q that deduces it directly from
f and x by modus ponens.

17

The Monad.Reader Issue 6

The Curry-Howard isomorphism becomes a kind of lens through which we can
look at statements of propositional calculus, and interpret them as statements
about functional programming. With that in mind, it seemed appropriate to me
to pick up a book on logic and start reading it through this lens. The book I chose
was a textbook on logic from my undergraduate days many years ago: Notes on
Logic and Set Theory by PT Johnstone [1]. Unfortunately for computer scientists,
this book might not seem the best choice, as it is mainly aimed at mathematicians,
but it’s the only book on logic I have read, and more importantly, I wanted to
approach this subject from a slightly different direction. In particular, picking up
a book on logic for computer scientists and interpreting it as computer science
doesn’t seem like a great achievement. But taking a book on logic that is largely
aimed at a different audience from computer scientists, and interpreting that as
being about computer science – that seems to me much more like an interesting
and non-trivial achievement. And when such a book on logic, viewed though the
Curry-Howard lens, turns out to contain detailed instructions on how to write and
optimise a compiler, then it gets really interesting, but now I’m getting ahead of
myself.

Logic

Johnstone begins his section on propositional calculus by introducing three axioms:

(a) (p → (q → p))

(b) ((p → (q → r)) → ((p → q) → (p → r)))

(c) (¬¬p → p)

The symbol ¬ is simply shorthand: ¬p really means (p →⊥) where ⊥ is an unprov-
able proposition (though it requires some work to show that it is unprovable). In
addition, Johnstone introduces just one derivation rule, modus ponens, which we’ve
already discussed above. Note that the axioms above apply not just to the symbols
p, q and r but to any propositions. For example ((p → r) → (q → (p → r))) is
an instance of axiom (a) and hence we can introduce it in our proofs whenever we
want.

Let’s build Haskell datatypes to manipulate propositions:

> infixr 5 :->

> data Proposition = Proposition :-> Proposition

> | Symbol String

> | False deriving Eq

18

Dan Piponi: Adventures in Classical-Land

> not p = p :-> False

> instance Show Proposition where

> show (a :-> b) = "(" ++ show a ++ " -> " ++ show b ++ ")"

> show (Symbol s) = s

> show False = "False"

The proposition p → q can now be built as the Haskell object

Symbol "p" :-> Symbol "q"

and we represent ⊥ with False. Note how show has been defined so that these
propositions are output in precisely the format recognised by Haskell. So a propo-
sition may be output directly as a Haskell type simply by printing it.

We also need to represent proofs and we can do this as follows:

> data Proof = MP Proof Proof

> | Axiom String Proposition deriving Eq

> instance Show Proof where

> show (Axiom n t) = "(" ++ n ++ " :: " ++ show t ++ ")"

> show (MP f x) = "(" ++ show f ++ " " ++ show x ++ ")"

A proof is either an application of modus ponens or an axiom. If it is an axiom
then it contains a string which is its name and the proposition which it introduces.
If it is an application of modus ponens then it’s represented as MP f x where f is
the condition and x is the antecedent. Note how show has been defined for this
type so that when a proof is printed it is output exactly like a Haskell expression.
In fact, if the names of all of the axioms correspond to names of Haskell functions
then the output expression is perfectly evaluable Haskell.

We could also use some helpful utilities:

> source :: Proposition -> Proposition

> source (a :-> b) = a

> target :: Proposition -> Proposition

> target (a :-> b) = b

> consequence :: Proof -> Proposition

> consequence (Axiom _ p) = p

> consequence (MP f g) = target (consequence f)

19

The Monad.Reader Issue 6

> infixl 5 @@

> (@@) :: Proof -> Proof -> Proof

> f @@ g | source (consequence f) == consequence g = MP f g

> | otherwise = error ("@@ error "++show f ++" "++show g)

The function consequence takes a proof and returns the proposition that it proves.
The binary operator (@@) is a safe version of MP that generates an error if modus
ponens is applied when it’s not appropriate. It’s a lot like function application.

Now we need to consider our three axioms above. As it stands, the function
Axiom allows you to introduce any proposition. We need to define an interface so
that only axioms valid in our logic may be introduced. To this end, we define three
functions a, b and c:

> a :: Proposition -> Proof

> a m@(p :-> (q :-> p’))

> | p==p’ = Axiom "a" m

> b :: Proposition -> Proof

> b m@((p :-> (q :-> r)) :-> ((p’ :-> q’) :-> (p’’ :-> r’)))

> | p==p’ && p==p’’ && q==q’ && r==r’ = Axiom "b" m

> c :: Proposition -> Proof

> c m@(((p :-> False) :-> False) :-> p’)

> | p==p’ = Axiom "c" m

Each of these functions constructs an Axiom value with a proposition of the
correct form. We now have everything we need to start proving theorems. Consider
Johnstone’s first proof in this system, a proof that p → p. It goes:

(p → ((p → p) → p)) (instance of (a))

((p → ((p → p) → p)) → ((p → (p → p)) → (p → p))) (instance of (b))

((p → (p → p)) → (p → p)) (modus ponens)

(p → (p → p)) (instance of (a))

(p → p) (modus ponens).

We can write this proof using our Haskell combinators as follows:

> identity :: Proposition -> Proof

> identity p = b1 @@ a1 @@ a2 where

20

Dan Piponi: Adventures in Classical-Land

> b1 = b ((p :-> (p :-> p) :-> p)

> :-> (p :-> p :-> p)

> :-> (p :-> p))

> a1 = a (p :-> (p :-> p) :-> p)

> a2 = a (p :-> p :-> p)

You should be able to see that b1, for example, corresponds to line 2 of the
proof, and that the second @@ corresponds to the final line of the proof.

I have used a particular style in writing my proof. The proof is essentially
one line b1 @@ a1 @@ a2 with the remaining lines saying which instances of the
axioms are required. I will use this style throughout. In a more sophisticated
implementation we’d have an automatic ‘type checker’ (or maybe I should say
‘proposition checker’) that would save us having to specify exactly which instance
we need and our proofs really would be one-liners. Alternatively we can write this
proof using the notation of λ-calculus as baa.

Curry-Howard revisited

At this point we have a complete working proof checking system for classical logic.
If your attempt to construct a proof (i.e. an object of type Proof) using a, b, c
and (@@) results in a Haskell runtime error then your proof wasn’t valid. You can
use consequence to find out what your proof has proved.

But so far we have made no use of the Curry-Howard isomorphism. So now it’s
time to start trying to interpret our proofs and propositions as types and programs.
If we can write functions a, b, and c with type signatures corresponding to the
relevant axioms, then we will immediately have a translation of any proof into a
working program. Note that when I say a, b and c now I mean functions in the
target, i.e. strings that are output by show. To find suitable functions there’s a
nice trick: we can use Lennart Augustsson’s theorem prover Djinn [2]. In fact,
here’s part of a Djinn session:

Djinn> a ? p -> (q -> p)

a :: p -> q -> p

a x1 _ = x1

Djinn> b ? (p -> (q -> r)) -> ((p -> q) -> (p -> r))

b :: (p -> q -> r) -> (p -> q) -> p -> r

b x1 x2 x3 = x1 x3 (x2 x3)

These definitions appear in the ‘preamble’ later. It’s looking good so far. We
just need a function for axiom (c):

21

The Monad.Reader Issue 6

Djinn> c ? (not (not p)) -> p

-- c cannot be realized.

And now we hit a major snag. There is no function c of this type and we seem
doomed. What went wrong?

The Curry-Howard isomorphism applies only to intuitionistic propositional cal-
culus but double negative elimination is an axiom of classical logic. Intuitionistic
logic is a form of logic that rejects some of the principles of classical logic, some of
which might seem to be so obviously true that nobody could possibly reject them.
Nonetheless, intuitionistic logic sometimes meshes better with with constructive
nature of much of computer science [3]. My textbook is aimed at ordinary math-
ematicians who typically spend their days working with classical logic. But this
doesn’t mean our project has ended.

There is a ‘translation’ of statements of classical logic into statements of intu-
itionistic logic such that a statement provable in classical logic is turned into a
statement provable in intuitionistic logic. This translation is known as the Gödel-
Gentzen translation. We denote this translation by using ⊥ as a superscript and
it is defined by:

⊥⊥ =⊥
p⊥ = ¬¬p = ((p →⊥) →⊥) where p is any symbol

(p → q)⊥ = (p⊥ → q⊥).

There is also a corresponding transformation for the proofs although this is
more complex to describe. However, notice how the translated propositions contain
many occurrences of ⊥. This is an unprovable proposition and so under the Curry-
Howard isomorphism corresponds to a type without inhabitants. This means we
have a perfectly good translation, but we end up translating propositions into
ones that make frequent use of an uninhabited type. So it’s actually a bit of a
boring translation. Instead we modify the Gödel-Gentzen translation slightly to
the following [4]:

⊥k = k

pk = ¬¬p = ((p → k) → k) where p is any symbol

(p → q)k = (pk → qk).

where k is any symbol we choose. This is still a perfectly well-behaved translation
and we can implement it in Haskell as follows:

22

Dan Piponi: Adventures in Classical-Land

> class Translatable a where

> (^) :: a -> Proposition -> a

> instance Translatable Proposition where

> False^k = k

> (p :-> q)^k = (p^k) :-> (q^k)

> p^k = (p :-> k) :-> k

There is also a corresponding definition of (^) that translates proofs but as it is
more complex, and the details aren’t relevant to most of what I say, it’s postponed
until the appendix. The important thing that needs to be borne in mind is that
consequence (x^k) == (consequence x)^k. In other words, the operator (^)

translates propositions and proofs together so that translated proofs become proofs
of translated propositions.

Suppose we write an expression of type a. Then after the Gödel-Gentzen trans-
lation we have something of type ak. Suppose a corresponds to the type Integer,
for example. Then we end up with an expression of type (Integer -> k) -> k

after translation. It’s not clear how we could display such a result. However, if
we know that we are ultimately evaluating a classical expression of type Integer,
then by choosing k = Integer we end up with something of type

(Integer -> Integer) -> Integer

We can easily convert one of these back into an integer by applying it to the identity
function. So we now have a canonical choice of k in the Gödel-Gentzen translation.
We simply choose it to be the type of the final expression we are evaluating.

In theory we now have the parts to start converting classical proofs into com-
plete runnable programs. We apply ^k to the proof and then use show to output
the translated proof in Haskell. Here’s a complete driver routine that performs
this translation, outputs the result to a file with a ‘preamble’ (containing the defi-
nitions of the combinators) prepended to it, and then runs it. As I use the system

command you may need to modify this code slightly to make it run with your
operating system. The preamble is contained in the appendix.

> compile start = do

> readFile "preamble.hs" >>= writeFile "out.hs"

> appendFile "out.hs" "\nstart = "

> appendFile "out.hs" (show $ start^(Symbol "K"))

> appendFile "out.hs" "\n"

> system "runhugs out.hs"

We can now run classical proofs using the function compile. The standard
way to build integers in a small functional language like this is to use Church

23

The Monad.Reader Issue 6

numerals [5]. But such numbers are tricky to display and are hard to use. So
we’ll cheat a little. The functions Symbol and Axiom can serve as a small ‘foreign
function interface’ that allows us to embed calls to Haskell functions within our
language to extend it beyond the three combinators a, b and c. This will allow us
to use familiar types such as Integer. But a type like Integer in our language
will be translated into (Integer -> k) -> k so if we want to use integers, say,
they’ll have to be translated too. We need a way to lift Haskell objects of type a

to (a -> k) -> k. We can cheat. We simply ask Djinn to conjure up a suitable
function of type a -> ((a -> k) -> k) and place this in our preamble along with
some similar functions for lifting other kinds of object:

> integer = Symbol "Integer"

> int n = Axiom ("lift0 " ++ show n) integer

> plus = Axiom "lift2 (+)" (integer :-> integer :-> integer)

Let’s start with a simple example:

> ex1 = plus @@ int 1 @@ int 2

We can run this with compile ex1. Running the generated Haskell program
returns 3, as you would expect.

Unfortunately, it’s not hard to see that writing proofs this way is rapidly going
to become unwieldy when we have only three combinators a, b and c to work with
(compare with Unlambda [6]). We need a way to simplify our proofs. One of
the first theorems Johnstone proves about propositional calculus is precisely what
we need, the Deduction Theorem. If S is a set of propositions and t is another
proposition, then S ` t is the statement that we can deduce t if we assume the
propositions in S. If we are making assumptions, however, then we are no longer
deriving theorems just from our original axioms (a), (b) and (c). Fortunately
the Deduction Theorem gives a way to turn such ‘proofs’ back into proper proofs
without any additional assumptions. The statement is:

Theorem 1 (Deduction Theorem).

S ` (s → t) iff S ∪ s ` t

In other words, we can remove an assumption s from a proof of t and convert
it into a proof of s → t that doesn’t assume s. In our code we represent an
assumption simply as a named axiom. We use the function elim to eliminate
these assumptions and when they are all eliminated we have a theorem written in
terms of just the axioms. The function elim is almost a literal implementation of
Johnstone’s proof except that I have added, as an optimisation, a clause to deal
with proofs already free of the assumption being eliminated.

24

Dan Piponi: Adventures in Classical-Land

> free :: String -> Proof -> Bool

> free n (Axiom n’ p) = n /= n’

> free n (MP a b) = free n a && free n b

> elim :: Proof -> Proof -> Proof

> elim (Axiom n p) (Axiom n’ q) =

> if n==n’

> then identity p

> else a (q :-> (p :-> q)) @@ (Axiom n’ q)

> elim (Axiom n p) m@(MP q r) =

> if free n m

> then

> -- optimisation

> let s = consequence m

> in a (s :-> p :-> s) @@ m

> else

> let q’ = elim (Axiom n p) q

> r’ = elim (Axiom n p) r

> tj = consequence r

> ti = target (consequence q)

> in b ((p :-> (tj :-> ti)) :->

> ((p :-> tj) :-> (p :-> ti))) @@ q’ @@ r’

As our first proof in the new style consider the proof of ⊥→ q. It’s called magic

because it apparently constructs anything you want from something of type False.
The catch, of course, is that there are no objects of type False, so you can never
use it to actually make something from nothing.

> magic :: Proposition -> Proof

> magic (False :-> q) = elim u1 $ c1 @@ (a1 @@ u1) where

> a1 = a (False :-> ((q :-> False) :-> False))

> c1 = c (not (not q) :-> q)

> u1 = Axiom "u" False

Maybe you’ve noticed what’s going on here. The elim function is exactly like
lambda abstraction. In lambda abstraction we may use a variable inside an expres-
sion and then convert the expression into a function in the same way that we’ve
just shown how to introduce a proposition and then convert it into a conditional.
So we can write the above proof as λu → c(au) ::⊥→ q. In fact, we can define:

> lambda = elim

25

The Monad.Reader Issue 6

But what does it mean?

We have implemented a system with a ‘function’ c, but what does it mean? We
know that it can’t actually be a function. In some ways, meeting c is a little like
meeting the complex number i for the first time. Syntactically it looks just like
any other constant, and yet semantically it’s not a number in any ordinary sense
of the word. Consider the following example with suggestive variable names:

> catch = c

> ex2 = plus @@ int 1 @@ e where

> throw1 = Axiom "throw" (not integer)

> catch1 = catch (not (not integer) :-> integer)

> e = catch1 @@ (lambda throw1 $ throw1 @@ int 1)

The function throw1 causes the computation of e to abort and the argument to
throw1 is passed out as the return value of catch1. Note how the type of catch1
works. The function throw1 takes an integer value and returns False. So the
argument to catch1 is of type not (not integer). But ultimately, catch1 re-
turns an integer and so catch1 turns a not (not integer) into an integer. This
example isn’t interesting but it becomes more interesting when we nest catches.

This is nothing like an evaluation in a pure functional language. The catch func-
tion has a bizarre non-local effect which becomes more apparent in the following
examples:

Compare

> ex3 = plus @@ int 1 @@ e1 where

> throw1 = Axiom "f" (not integer)

> throw2 = Axiom "g" (not integer)

> c1 = c (not (not integer) :-> integer)

> c2 = c (not (not integer) :-> integer)

> e1 = c1 @@ (lambda throw1 (throw1 @@ (plus @@ int 10 @@ e2)))

> e2 = c2 @@ (lambda throw2 (throw1 @@ int 100))

and

> ex4 = plus @@ int 1 @@ e1 where

> throw1 = Axiom "f" (not integer)

> throw2 = Axiom "g" (not integer)

> c1 = c (not (not integer) :-> integer)

> c2 = c (not (not integer) :-> integer)

> e1 = c1 @@ (lambda throw1 (throw1 @@ (plus @@ int 10 @@ e2)))

> e2 = c2 @@ (lambda throw2 (throw2 @@ int 100))

26

Dan Piponi: Adventures in Classical-Land

In the former case we really are throwing the value 100 past the addition of 10
whereas in the latter the throw is to the inner catch and hence the addition of 10
does take place.

Using catch is a little awkward. It would be better if we could throw values
out from any subexpression. We would also like catch to simply return the value
of the expression inside it, when this expression does not use a throw. Instead of
having the type

(((p -> False) -> False) -> p)

catch should have a type of the form (((? -> ?) -> ?) -> ? for some sub-
stitution of types for the ?s. We’d like that the value of the catch is the same as
the value thrown so that narrows things down to (((p -> ?) -> ?) -> p. But
we’d also like to be able to throw from a context of any type, not just one of type
False. So we must have type (((p -> q) -> ?) -> p. And if we’d like to have
the option to not throw then the value that throw maps to must match p meaning
the new improved catch should have type (((p -> q) -> p) -> p. Amazingly
this type corresponds to a well known theorem of classical logic known as Peirce’s
law. (‘Peirce’, by the way, is pronounced like ‘purse’.) We can prove it via:

((p → q) → p) (hypothesis v)

(p →⊥) (hypothesis w)

p (hypothesis u)

⊥ (modus ponens)

(⊥→ (q →⊥) →⊥) (instance of (a))

((q →⊥) →⊥) (modus ponens)

q (instance of (c))

(p → q) (deduction theorem from (u))

p (modus ponens)

⊥ (modus ponens)

((p →⊥) →⊥) (deduction theorem from (w))

p (instance of (c))

(((p → q) → p) → p) (deduction theorem from (v))

27

The Monad.Reader Issue 6

We can rewrite this as a partly annotated λ-expression:

λv →

p︷ ︸︸ ︷

c(λw → w︸︷︷︸
p→⊥

p︷ ︸︸ ︷
(v (λu → c

(q→⊥)→⊥︷ ︸︸ ︷
(a

⊥︷ ︸︸ ︷
(w u︸︷︷︸

p

)))︸ ︷︷ ︸
p→q

)

︸ ︷︷ ︸
⊥

)

And that in turn can be translated into the following code:

> peirce (((p :-> q) :-> p’) :-> p’’)

> | (p’,p’’)==(p,p) =

> lambda v1 $ c1 @@ (lambda w1 $ w1 @@ (v1 @@

> (lambda u1 $ c2 @@ (a1 @@ (w1 @@ u1)))))

> where

> v1 = Axiom "v" ((p :-> q) :-> p)

> w1 = Axiom "w" (not p)

> u1 = Axiom "u" p

> a1 = a (False :-> not q :-> False)

> c1 = c (not (not p) :-> p)

> c2 = c (not (not q) :-> q)

We can now throw subexpressions out from anywhere within a peirce and if we
fail to throw anything the value of the function within peirce is simply returned.

> ex5 = plus @@ int 1 @@ (peirce1 @@

> (lambda throw1 $ plus @@ int 2 @@ (throw1 @@ int 77)))

> where

> peirce1 = peirce i

> i = ((integer :-> integer) :-> integer) :-> integer

> throw1 = Axiom "throw" (integer :-> integer)

Try compile ex5 to test it out!
The peirce function is better known by the name callcc

> callcc = peirce

from Scheme’s ‘call with current continuation’.

28

Dan Piponi: Adventures in Classical-Land

And that was the goal I was trying to achieve all along. I knew that call with
current continuation was supposed to have a type corresponding to Peirce’s law
but I didn’t understand how this could be, what it meant, and it all seemed
rather ad hoc. But by starting from some simple axioms, this operation and its
implementation has arisen in a completely natural way. I didn’t even have to know
what a ‘continuation’ was to implement it.

How Does it Work?

Consider a Haskell expression such as f (g 3) where f and g are defined as

f x = 2*x

g x = x+1

result = f (g 3)

We can approximately model how this is evaluated as follows: the function f

needs its argument to be evaluated so g is first called with argument 3. Then g

returns some value which is in turn handed into f.
Now imagine a slightly different way of coding where instead of just accepting

what a function evaluates and then doing the next thing, you explicitly tell each
function you call what to do next. Let me rewrite the above example in this style:

f x c = c (2*x)

g x c = c (x+1)

result c = g 3 (\x -> f x c)

Even the final result has been rewritten so that it is, in some sense, ‘awaiting
orders’ for what to do with its result. To actually get a numerical answer we need
to tell it to do nothing more by evaluating result id. But here’s the curious
thing: we can rewrite g to be:

g x c = x+1

In other words, g is at liberty to ignore c and simply throw out its own result
immediately. So by writing in this ‘continuation passing style’ (CPS) we are able
to write functions that can control the future execution of programs just like catch
and throw above. In fact, the Gödel-Gentzen translation turns out to be one way
(among many) to translate code into continuation passing style. As I didn’t need
to know this to write the above code I’m not going to say too much about it here,
but ultimately to understand what’s really going on requires an understanding of
continuations [7]. For now, I’ll just mention that the argument c in the above ex-
amples is known as a continuation – it specifies how the program should ‘continue’.
In Haskell the Cont monad is defined by:

29

The Monad.Reader Issue 6

newtype Cont r a = Cont { runCont :: (a -> r) -> r }

which looks suspiciously like ar.

Conclusions

It’s time now to summarise what has been achieved. We have shown how to trans-
late theorems of classical propositional calculus into intuitionistic propositional
calculus and thence into Haskell. So we have a compiler for a programming lan-
guage whose syntax is identical to classical propositional calculus. We have done so
without making any reference to compiler writing texts, even as far as implement-
ing lambda abstraction and continuations. We have seen how this programming
language is essentially typed lambda calculus with support for continuations, but
we didn’t have to develop a new kind of abstract machine, or even know what
a continuation was, to do this. We have also shown how properties of classical
logic can be used to write code for our language. All of this comes more or less
‘for free’ from using the (modified) Gödel-Gentzen translation combined with the
Curry-Howard isomorphism.

None of these are novel results. Continuations have a long history [8] with many
papers describing the connection with classical logic [9]. But I hope I’ve given a
less daunting path into some of the publications. Along the way we’ve also shown
Haskell can play a useful role as a test bed for experimenting with logic. We also
now have a typed combinator language to play with, a little like Unlambda [6].
And most curiously of all - we see that within an ordinary textbook on logic is
a secret hidden text on compiler writing and we only need to look through the
Curry-Howard lens to reveal it!

Acknowledgements

Thanks to Dirk Thierbach for a comment on comp.lang.functional that was cryptic
enough not to give the whole game away but helpful enough to encourage me to
figure out what was going on for myself. And thanks to the guys on #haskell for
making suggestions and fixing typos.

About the author

Dan Piponi did his PhD in Mathematics at King’s College, London. Since then,
he has worked in the graphics and visual effects industry for 12 years – with movie
credits including all three Matrix movies. He is probably the only Haskell hacker
with an Academy Award to his name.

30

Dan Piponi: Adventures in Classical-Land

Exercises

1. We can define logical disjunction via a ∨ b = ¬a → b. Use this to define
versions of Haskell’s type constructor Either, the constructor Left, the con-
structor Right and either. For example Left should correspond to a map
a → (¬a → b).

2. We can define conjunction, a∧ b similarly. Give a suitable definition and use
your definition to define the type constructor (,), the data constructor (,),
and the functions fst and snd.

3. Given any ‘function’ in our programming language, a → b, we can define a
dual ¬b → ¬a. Use this and De Morgan’s Law to find a way to automatically
get a solution to problem (3) in terms of problem (2).

4. How does either work in terms of the semantics of catch? Where does the
story of the Devil recounted by Wadler [10] fit in?

5. Describe what happens in the following code fragment:

callcc (\throw -> plus @@ throw (int 1) @@ throw (int 2))

6. Write a theorem prover for classical logic and test whether it correctly pro-
duces an implementation of peirce. (Theorem provers for classical proposi-
tional calculus are much easier to write than theorem provers for intuitionistic
propositional calculus.)

7. Prove that c does what I claim.
8. The compiler we have written is really a meta program that generates another

Haskell program. Rewrite it using Template Haskell. (Suggested by Wouter
Swierstra.)

9. The function magic doesn’t actually create something from nothing, and yet
it is a useful component in some proofs. What purpose does it serve?

References

[1] P. T. Johnstone. Notes on logic and set theory. Cambridge University Press, New
York, NY, USA (1987).

[2] http://www.augustsson.net/Darcs/Djinn/.

[3] http://plato.stanford.edu/entries/logic-intuitionistic/.

[4] Hajime Ishihara. A Note On The Gödel-Gentzen Translation. http://citeseer.
ist.psu.edu/ishihara98note.html.

[5] http://en.wikipedia.org/wiki/Church_numeral.

[6] http://www.madore.org/~david/programs/unlambda/.

31

http://www.augustsson.net/Darcs/Djinn/
http://plato.stanford.edu/entries/logic-intuitionistic/
http://citeseer.ist.psu.edu/ishihara98note.html
http://citeseer.ist.psu.edu/ishihara98note.html
http://en.wikipedia.org/wiki/Church_numeral
http://www.madore.org/~david/programs/unlambda/

The Monad.Reader Issue 6

[7] http://en.wikipedia.org/wiki/Continuation.

[8] John C. Reynolds. The Discoveries of Continuations. LISP and Symbolic
Computation, 6(3–4):pages 233–247 (1993). http://citeseer.ist.psu.edu/
reynolds93discoveries.html.

[9] Timothy G. Griffin. The Formulae-as-Types Notion of Control. In Conf. Record
17th Annual ACM Symp. on Principles of Programming Languages, POPL’90, San
Francisco, CA, USA, 17–19 Jan 1990, pages 47–57. ACM Press, New York (1990).
http://citeseer.ist.psu.edu/griffin90formulaeastypes.html.

[10] Philip Wadler. Call-by-value is dual to call-by-name. http://homepages.inf.ed.
ac.uk/wadler/papers/dual/dual.pdf.

[11] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: an Introduction.
Studies in Logic and the Foundations of Mathematics, North-Holland (1988).

Appendix: Gödel-Gentzen translation

To make the translation easier I, introduce new combinators d, e, f and g. These
could all be written in terms of b and c, but it’s easier to use Djinn to find suitable
definitions.

This algorithm is more or less a literal interpretation of theorem 2.3.5 in Troelstra
and van Dalen [11]. Translation of proof steps using double negation elimination
are built by induction on the depth of the rightmost leaf of the proposition.

> pushdown q proof = g (

> consequence proof

> :-> (q :-> source (consequence proof))

> :-> (q :-> target (consequence proof))

>) @@ proof

> g’ p q r = g $ ((q :-> r) :-> (p :-> q) :-> (p :-> r))

> g2 a b | source (consequence a) == target (consequence b) =

> ((g’ (source (consequence b))

> (target (consequence b)) (target (consequence a))) @@ a) @@ b

> not’ k p = p :-> k

> not’2 k = not’ k . not’ k

> not’4 k = not’2 k . not’2 k

32

http://en.wikipedia.org/wiki/Continuation
http://citeseer.ist.psu.edu/reynolds93discoveries.html
http://citeseer.ist.psu.edu/reynolds93discoveries.html
http://citeseer.ist.psu.edu/griffin90formulaeastypes.html
http://homepages.inf.ed.ac.uk/wadler/papers/dual/dual.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/dual/dual.pdf

Dan Piponi: Adventures in Classical-Land

> instance Translatable Proof where

> m@(Axiom "a" _)^k = a ((consequence m)^k)

> m@(Axiom "b" _)^k = b ((consequence m)^k)

> m@(MP f g)^k = (f^k) @@ (g^k)

> m@(Axiom "c" (((p :-> False) :-> False) :-> p’))^k =

> foldl1 g2 (reverse $ steps p) where

> steps False = [f (((k :-> k) :-> k) :-> k)]

> steps p@(Symbol _) = [d (not’4 k p :-> not’2 k p)]

> steps (p :-> q) =

> let pushed = map (pushdown (p^k)) (steps q)

> in e (not’2 k ((p^k) :-> (q^k)) :->

> source (consequence (head pushed))) : pushed

> m@(Axiom a p)^k = Axiom a (p^k)

> x^k = error ("Can’t gg_proof k " ++ show x)

> d m@((((p :-> k) :-> k1) :-> k2) :-> (p’ :-> k3))

> | (p,k,k,k)==(p’,k1,k2,k3) = Axiom "d" m

> e m@((((p :-> q) :-> end1) :-> end2) :->

> (p’ :-> ((q’ :-> end3) :-> end4))) |

> (p,q,end1,end1,(end1,end1))==(p’,q’,end1,end2,(end3,end4)) =

> Axiom "e" m

> f m@(((result :-> end1) :-> end2) :-> end3) |

> (result,result,result)==(end1,end2,end3) = Axiom "f" m

> g m@((q :-> r) :-> (p :-> q’) :-> (p’ :-> r’))

> = if (p,q,r)==(p’,q’,r’) then Axiom "(.)" m else error "g"

33

Appendix: Preamble

The following code forms the preamble and should be placed in preamble.hs:

a :: p -> q -> p

a x1 _ = x1

b :: (p -> q -> r) -> (p -> q) -> p -> r

b x1 x2 x3 = x1 x3 (x2 x3)

d :: (((a -> r) -> r) -> r) -> a -> r

d x1 x2 = x1 (\ c8 -> c8 x2)

e :: (((p -> q) -> c) -> c) -> p -> (q -> c) -> c

e x1 x2 x3 = x1 (\ c9 -> x3 (c9 x2))

f :: ((c -> c) -> c) -> c

f x1 = x1 (\ c6 -> c6)

lift0 :: a -> ((a -> r) -> r)

lift0 x1 x2 = x2 x1

lift1 :: (a -> b) -> ((a -> c) -> c) -> (b -> c) -> c

lift1 x1 x2 x3 = x2 (\ c8 -> x3 (x1 c8))

lift2 :: (a -> b -> c) -> ((a -> r) -> r) ->

((b -> r) -> r) -> (c -> r) -> r

lift2 x1 x2 x3 x4 = x3 (\ c17 -> x2 (\ c19 -> x4 (x1 c19 c17)))

type K = Integer

main = print (start id)

Assembly: Circular Programming
with Recursive do

by Russell O’Connor 〈roconnor@alumni.uwaterloo.ca〉

Monads and higher order functions make Haskell particularly well suited for cre-
ating domain specific languages. This article will discuss a simple implementation
of an assembly language within Haskell. This example will make use of circular
programming, and particularly use of recursive do. Circular programming is an
under-utilized programming idiom in Haskell. I hope this article inspires readers
to use circular programming in their code.

The Assembly Language

In the end we want to build an assembly language library that will allow users to
write code that looks as follows:

testMC :: AssemblyCode

testMC = mdo {

start <- label;

iout ’>’ T Reg7;

inp Reg0;

high Reg1;

ljeq Reg0 Reg1 end T Reg4 Reg5 Reg6 Reg7;

out Reg0;

ljmp start T Reg6 Reg7;

end <- label;

halt;

}

Assembly language is a sequence of machine code instructions that operates
on registers and memory, etc. for a particular machine. Various points in the

35

The Monad.Reader Issue 6

sequence of instructions are labeled. Jump instructions move the control flow to a
particular label when a given condition is satisfied. Labeling of instruction points is
necessary because several different AssemblyCode objects are often linked together
later. Therefore, the actual locations of the instructions is not known until link
time.

The assemble function will take an AssemblyCode object and encode it as ma-
chine code (in this case Word32s). The machine code can be written to standard
out with the following code.

main = mapM out (assemble testMC)

where

out x = putStr [x0,x1,x2,x3]

where

x0 = toEnum . fromIntegral $ (x ‘shiftR‘ 24)

x1 = toEnum . fromIntegral $ (x ‘shiftR‘ 16) .&. 0xff

x2 = toEnum . fromIntegral $ (x ‘shiftR‘ 8) .&. 0xff

x3 = toEnum . fromIntegral $ x .&. 0xff

Haskell has become an assembler!

This program does not evaluate the assembly instructions. The only purpose is
to compute the machine code for sequence of assembly instructions. In particular
it computes the location of the labels and correctly builds the jump instructions.
Let’s see how to implement AssemblyCode.

The Universal Machine

The 2006 ICFP Programming Contest committee recovered 2000 year old tablets
that contain a specification for ancient universal machine. A transcription of the
tablet can be found at http://icfpcontest.org/um-spec.txt. Don’t worry,
there are no spoilers here. The goal here is to create an assembler for the specified
machine.

According to the specification the machine has eight registers.

data Register =

Reg0 | Reg1 | Reg2 | Reg3 | Reg4 | Reg5 | Reg6 | Reg7

deriving (Eq, Show, Enum, Bounded)

There are fourteen instructions and each operation specifies which registers it
operates on.

36

http://icfpcontest.org/um-spec.txt

Russell O’Connor: Assembly: Circular Programming with Recursive do

data Instruction r =

CMove r r r

| Read r r r

| Write r r r

| Add r r r

| Mul r r r

| Div r r r

| Nand r r r

| Halt

| Alloc r r

| Free r

| Output r

| Input r

| Load r r

| Orth r Word32

deriving (Eq, Show)

Here I have abstracted over the type of registers. This extra flexibility may come
in handy later.

Each instruction is encoded as a 32-bit word according to the specification.

encode :: Instruction Register -> Word32

encode (CMove a b c) = encodeOp 0 a b c

encode (Read a b c) = encodeOp 1 a b c

encode (Write a b c) = encodeOp 2 a b c

encode (Add a b c) = encodeOp 3 a b c

encode (Mul a b c) = encodeOp 4 a b c

encode (Div a b c) = encodeOp 5 a b c

encode (Nand a b c) = encodeOp 6 a b c

encode Halt = encodeOp 7 minBound minBound minBound

encode (Alloc b c) = encodeOp 8 minBound b c

encode (Free c) = encodeOp 9 minBound minBound c

encode (Output c) = encodeOp 10 minBound minBound c

encode (Input c) = encodeOp 11 minBound minBound c

encode (Load b c) = encodeOp 12 minBound b c

encode (Orth a v) =

(13 ‘shiftL‘ 28) .|. (convert a ‘shiftL‘ 25) .|. v

convert = fromIntegral . fromEnum

37

The Monad.Reader Issue 6

encodeOp op a b c =

(op ‘shiftL‘ 28) .|.

(convert a ‘shiftL‘ 6) .|.

(convert b ‘shiftL‘ 3) .|.

convert c

encodeAsm = map encode

Now that the instructions are defined, it is time to build an assembler.

The Haskell 98 Solution

My very first attempt at writing an assembler was awful. The tricky part of an
assembler is getting the jump instructions to jump to the right place. My first
program output the encoded instructions, plus a table of labels and instruction
locations. Then I had to rerun my program to pass in the correct association list
between labels and instructions. Like TEX, it needed to be run more than once.
Certainly there is a better way than running a program twice.

The following is my second attempt. I create a particular RWS (Reader-Writer-
State) monad. This monad will be used to sequence assembly instructions and
labels.

newtype AssemblyCodeMonad a =

AssemblyCodeMonad

(RWS [(Label,Location)]

[Either (Instruction Register) (Label,Location)]

(Location, Integer)

a)

deriving (Monad, MonadReader a, MonadWriter a, MonadState a)

type AssemblyCode = AssemblyCodeMonad ()

The monad reads an association list of type [(Label,Location)]. This asso-
ciation list maps labels to locations. For the moment, assume that this map will
be given as an oracle. The monad writes either an instruction, or a label with
a location. Finally, the state consists of the current instruction location, and a
second counter that will be used to generate fresh label names.

There are two kinds of labels, a user defined, (hopefully) globally unique string;
and an automatically generated unique label.

data Label = Label String | Fresh Integer

deriving (Eq, Show)

38

Russell O’Connor: Assembly: Circular Programming with Recursive do

According to the universal machine specification each instruction is located in a
platter indexed by a 32-bit number in the ‘0’ array. I make a new type, Location,
for reasons that will become clear. Making a new type is also good programming
practice.

newtype Location = Location Word32

The most basic operation for this monad is outputting an instruction. This
command writes the instruction and increases the location counter.

writeInstruction :: Instruction Register -> AssemblyCode

writeInstruction i = do

tell [Left i]

modify (\(Location a,b) -> (Location (succ a), b))

For each instruction I make a corresponding AssemblyCode command that writes
the instruction.

-- I rename condition move (cmove) to the more descriptive

-- move-not-equal-zero (mneqz)

mneqz cond src dst = writeInstruction (CMove dst src cond)

read arr ix dst = writeInstruction (Read dst arr ix)

write src arr ix = writeInstruction (Write arr ix src)

add src1 src2 dst = writeInstruction (Add dst src1 src2)

mul src1 src2 dst = writeInstruction (Mul dst src1 src2)

div src1 src2 dst = writeInstruction (Div dst src1 src2)

nand src1 src2 dst = writeInstruction (Nand dst src1 src2)

halt = writeInstruction Halt

alloc size dst = writeInstruction (Alloc dst size)

free ptr = writeInstruction (Free ptr)

out src = writeInstruction (Output src)

inp dst = writeInstruction (Input dst)

load ptr offset = writeInstruction (Load ptr offset)

-- Orth can only write 25 bit numbers

set25 val dst = writeInstruction (Orth dst val)

These basic instructions are a little primitive to do serious programming with.
One can sequence these primitive instructions and create new instructions. A
normal assembler has some small macro language for this, but I have the entire
Haskell language avaiable for making “macros”.

Some of these new instructions will need to use temporary registers for their
work. I choose to separate the temporary registers from source and destination
registers by introducing a separate data type T with a single constructor.

39

The Monad.Reader Issue 6

data T = T

not src dst = nand src src dst

neg src dst T tmp = do

set25 0 tmp

not tmp tmp

mul src tmp dst

sub src1 src2 dst T tmp = do

neg src2 src2 T tmp

add src1 src2 dst

-- return src2 to its original value only if

-- src2 isn’t the destination

unless (dst==src2) (neg src2 src2 T tmp)

shftG op n src dst T tmp

| n < 25 = do

set25 (2^n) tmp

op src tmp dst

| otherwise = do

shftG op 24 src dst T tmp

shftG op (n-24) dst dst T tmp

shftr = shftG div

shftl = shftG mul

set32 val dst T tmp = do

set25 (val ‘shiftR‘ 16) dst

shftl 16 dst dst T tmp

set25 (val .&. 0xFFFF) tmp

add tmp dst dst

jmp offset T tmp = do

set25 0 tmp

load tmp offset

In assembly programming it is typical to jump to a labeled instruction rather
than jumping to a location stored in a register. The lset function loads a location
into a register. The ljmp calls lset to loads a location and then jmp to jumps
to it. Finally, the loc function translates a label into a location. I postpone the

40

Russell O’Connor: Assembly: Circular Programming with Recursive do

definition of loc for the moment.

lset l dst T tmp = do {

Location i <- loc l;

set32 i dst T tmp;

}

ljmp l T tmp1 tmp2 = do {

lset l tmp1 T tmp2;

jmp tmp1 T tmp2;

}

In order to jump to labels, one needs to make the labels. This is the second
thing the monad can write. A label statement gets the current instruction counter
and associates the label with it.

label :: Label -> AssemblyCode

label l = do

(a,b) <- get

tell [Right (l,a)]

There are two types of labels. The most common type is unique string provided
by the user

labelName :: String -> AssemblyCode

labelName s = label (Label s)

However, when making “macros” a user supplied globally unique string is im-
possible because each instance of the macro would reuse the same label name. So
instead we use the monad to generate a fresh label name.

fresh :: AssemblyCodeMonad Label

fresh = do

(a,b) <- get

put (a, succ b)

return (Fresh b)

Labels are transformed into to locations by asking the oracle. The oracle returns
an association list of all labels and locations. The function loc asks the oracle for
this list and then looks up the label in the association list.

41

The Monad.Reader Issue 6

loc :: Label -> AssemblyCodeMonad Location

loc l = do

labels <- ask

let ~(Just i) = lookup l labels

return i

What does this ~ mean? The ~ makes the match irrefutable. This means that the
actual pattern match is delayed until i is demanded. Actually all let expressions
are irrefutable, so the ~ is not necessary; however, I leave it here for emphasis. I
will show later that the lazy match here is very important.

The jump-if-equal-zero “macro” provides an example of using labels. The jeqz

function generates a unique label whose value is assigned to the skip variable.
The location at the end of the macro is given this label. The label is used when it
is passed to the lset function.

jeqz cond offset T tmp1 tmp2 = do {

skip <- fresh;

lset skip tmp1 T tmp2;

mneqz cond offset tmp1;

jmp offset T tmp1;

label skip;

}

Notice that the location of the label is queried by lset before the location for
the label is set. Thanks to the oracle this is possible. But how does one build this
oracle? This is handled by the link function which runs the RWS monad.

link :: AssemblyCode -> [Instruction Register]

link (AssemblyCodeMonad mc) = asm

where

((), _, output) = runRWS mc labels (Location 0,0)

(asm, labels) = splitEithers output

splitEithers :: [Either a b] -> ([a], [b])

splitEithers = foldr accum ([], [])

where

accum = either (first . (:)) (second . (:))

The AssemblyCodeMonad is run starting with inital state (Location 0,0). The
return value, and final state are discarded. The output is split into two pieces,
the assembly instructions and the association lists of labels and locations. The
assembly instructions is the returned as result of link. The assocation list of labels

42

Russell O’Connor: Assembly: Circular Programming with Recursive do

and locations is feed back as input to become the oracle for the RWS monad. This
circularity of passing the output of runRWS back as the input of runRWS is called
tying-the-knot, and it is the essential part of circular programming.

Here is an example of using the AssemblyCode monad to generate machine code
for the UM. The assembly program repeatedly writes a prompt and echos one
character until the end of input.

assemble = encodeAsm . link

testMC :: AssemblyCode

testMC = do {

labelName "start";

iout ’>’ T Reg7;

inp Reg0;

high Reg1;

ljeq Reg0 Reg1 (Label "end") T Reg4 Reg5 Reg6 Reg7;

out Reg0;

ljmp (Label "start") T Reg6 Reg7;

labelName "end";

halt;

}

main = mapM out (assemble testMC)

where

out x = putStr [x0,x1,x2,x3]

where

x0 = toEnum . fromIntegral $ (x ‘shiftR‘ 24)

x1 = toEnum . fromIntegral $ (x ‘shiftR‘ 16) .&. 0xff

x2 = toEnum . fromIntegral $ (x ‘shiftR‘ 8) .&. 0xff

x3 = toEnum . fromIntegral $ x .&. 0xff

You can build this test program by compiling this with GHC using the command
ghc --make -main-is Haskell98Solution Haskell98Solution.lhs

How Does It Work?

That was the example, but how does it work, or rather why does it work? As we all
know Haskell is a lazy language which means it has an unusal order of evaluation
equivalent to the so called normal order evaluation. Normal order evaluation has
the property that if any evaluation order reduces to a result, then normal order

43

The Monad.Reader Issue 6

will also. This means one can forget what the actual order of evaluation is. So long
as one can find some order of evaluation that delivers a result, then one knows the
Haskell code give the same result.

In this case, imagine runRWS first going through and computing all the instruc-
tion names, without filling in the the instruction parameter values. At the same
time it creates the association list of labels and locations. Imagine that only after
this association list is created does the evaluator go through and fill in the param-
eters for the instructions. Because only the parameters for the instructions require
the association list this evalutation order works. This means that whatever order
Haskell uses, it will compute the same result.

Time Travel

That is the official explaination, but I prefer the sci-fi explaination. When we pass
the output of runRWS into the input for the oracle we are actually sending the data
backwards in time. So when loc queries the oracle we get a result from the future.

Time travel is a very dangrous business. One false move and you can create a
temporal paradox that will destory the universe (which in this case means that
the computation will diverge). When programming with values from the future, it
is important never, never, to do anything with the values that might change the
future. This is the temporal prime directive.

Here is an example of flagrant disregard for the temporal prime directive. I
thought it would be a good idea to have the RWS monad fail in case the lookup
of a label failed. So I originally wrote the following:

loc :: Label -> AssemblyCodeMonad Location

loc l = do

labels <- ask

lookup l labels

However, this violates the temporal prime directive. If the lookup fails then the
entire monad fails. This would mean that the association list is never created. The
association list would never be sent back in time. Without an assocation list we
would never be able to inspect it in order to determine that our label isn’t in it.
Voila, temporal paradox. If you use the code above, then the whole compuation
diverges.

Temporal paradoxes can be more subtle than this. What do I mean by doing
something that might change the future? When you do a case analysis on the
data from the future, all the data that you touch from then on becomes tainted
and must not come in contact with the data that will be sent back in time. This
is why I emphasise the irrefultable pattern match in loc. If a pattern match

44

Russell O’Connor: Assembly: Circular Programming with Recursive do

actually occured at that point in the monad, the rest of the monad commands
would become tainted. Fortunately the let expression only taints the variable i.

Another example of a temporal paradox would be using set instead of set32
for in the definition of lset

set val dst T tmp | val < 2^25 = set25 val dst

| otherwise = set32 val dst T tmp

lset l dst T tmp = do

Location i <- loc l

set i dst T tmp

The set function does a case analysis on val, to see which of set25 or set32 to
use. The problem is that doing such an analysis on a location from the future might
change the number of instruction made, which in turn could change the location
of the label. Even if all the locations will be less than 225, the case analysis here
is enough to cause a paradox.

Because data from the future is so volitle, I wrap the location up with a newtype.
The user of the module has no way to directly access the contents of a Location

because the Location constructor is not exported. This helps prevent the user from
causing temporal paradoxes.

Before moving on, here are a couple more examples of “macros” that one can
define.

-- immediate out

iout c T tmp = do {

set25 (fromIntegral $ fromEnum c) tmp;

out tmp;

}

zero dst = do {

set25 0 dst;

}

-- set register to all ones

high dst = do {

zero dst;

not dst dst;

}

45

The Monad.Reader Issue 6

jeq cond1 cond2 offset T tmp1 tmp2 tmp3 = do {

sub cond1 cond2 tmp1 T tmp2;

jeqz tmp1 offset T tmp2 tmp3;

}

ljeqz cond l T tmp1 tmp2 tmp3 = do {

lset l tmp1 T tmp2;

jeqz cond tmp1 T tmp2 tmp3;

}

ljeq cond1 cond2 l T tmp1 tmp2 tmp3 tmp4 = do {

lset l tmp1 T tmp2;

jeq cond1 cond2 tmp1 T tmp2 tmp3 tmp4;

}

The Recursive Do Solution

We can do even better than the Haskell98Solution with a language extension.
GHC has a keyword mdo that stands for µ-do, or recursive do. There are two
major differences between a do block and an mdo block. In an mdo block variables
assigned to cannot be repeated. So the code

mdo -- ILLEGAL EXAMPLE

c <- getChar

c <- getChar

is not acceptable. The second major difference is that you can refer to variables
that have not yet been assigned.

mdo

a <- return b

b <- [1..3]

return a

You can see that if multiple assignments were allowed, it would be unclear
which assignment a variable refers to. Unfortunately mdo does not work with
every monad. For mdo to work an instance of MonadFix is required. Fortunately
most monads are instances of MonadFix.

Using a variable before its assignment carries the same risks of time travel dis-
cussed in the previous section. The value is from the future and one must not do
anything with it that might change the future.

Let us recreate our assembler for use with mdo.

46

Russell O’Connor: Assembly: Circular Programming with Recursive do

newtype AssemblyCodeMonad a =

AssemblyCodeMonad (RWS () [Instruction Register] Location a)

deriving (Monad, MonadFix)

type AssemblyCode = AssemblyCodeMonad ()

The AssemblyCodeMonad is simpler this time. There is no oracle, so I use ()

for the reader part. The writer part only outputs instructions. The state needs to
only keeps track of the current instruction number.

newtype Location = Location Word32

The writeInstruction function is a little simpler than before because the
AssemblyCodeMonad is simpler.

writeInstruction :: Instruction Register -> AssemblyCode

writeInstruction i = AssemblyCodeMonad $ do

tell [i]

modify (\(Location l) -> Location (succ l))

Commands for making AssemblyCode instructions are exactly the same as be-
fore.

mneqz cond src dst = do

writeInstruction $ CMove dst src cond

I postpone the rest of the instructions until the end and move directly to man-
aging labels. The lset command is exactly the same as before.

lset (Location v) dst T tmp = set32 v dst T tmp

Acquiring a label is easier than before. Instead of the command taking a label
name, all it does is return the location of the current instruction counter

label :: AssemblyCodeMonad Location

label = AssemblyCodeMonad get

For an example of using label, consider again the jump-if-equal-zero instruction.

jeqz cond offset T tmp1 tmp2 = mdo {

lset skip tmp1 T tmp2;

mneqz cond offset tmp1;

jmp offset T tmp1;

skip <- label;

return () }

47

The Monad.Reader Issue 6

Here the a label named skip is created near the end, but the recursive do allows
one to refer to this label at the beginning with the lset instruction. This is the
same sort of circular programming that we had in the Haskell98Solution, but
now mdo is handling all the work. Also notice that one no longer needs to use
fresh to create a globally unique name. One uses Haskell variables for the label
names, and they have the scope of the entire mdo block.

The link function now simply executes the monad. The mdo structure handles
all the circular programming, so that there is no need to tie the knot by hand.

link :: AssemblyCode -> [Instruction Register]

link (AssemblyCodeMonad mc) = asm

where

((), _, asm) = runRWS mc () (Location 0)

The result is that mdo allows one to create an assembler syntax with label that
works in a easy and clear way. Look at our example program from the introduction
again.

testMC :: AssemblyCode

testMC = mdo {

start <- label;

iout ’>’ T Reg7;

inp Reg0;

high Reg1;

ljeq Reg0 Reg1 end T Reg4 Reg5 Reg6 Reg7;

out Reg0;

ljmp start T Reg6 Reg7;

end <- label;

halt;

}

The code inside the mdo block looks like an assembly language, but it really
is Haskell. Because it is Haskell, all the functionality of the Haskell language is
available to the programmer for the “macro” language of this assembler.

Now that you have seen one example of how mdo can be used, I hope you it will
become part of your toolkit for solving problems. For some practice with recursive
do, try the exercises at the end of the article.

The rest of the instructions and “macros” are included in the appendix.

48

Russell O’Connor: Assembly: Circular Programming with Recursive do

About the author

Russell O’Connor has a bachelor’s degree in pure mathematics and computer sci-
ence from the University of Waterloo. He is currently pursuing a PhD on efficient
correct exact real arithmetic in the Foundations Group at Radboud University
Nijmegen.

Exercises

1. Show that you can make mutually dependent assembly modules using mdo.
Write one module that consumes and echo characters until the < character
is read. When that happens make a tail call (a jump) to a Location passed
as a parameter. Write another module that consumes and does not echo
characters until the > character is read. When that happens make a tail
call to a Location passed as a parameter. Have both modules return the
Location of where they begin. Now put the two together to create a program
that removes “tags” (strings between and including < and >) from input.

2. Create a new type of command to write to a data segment that will be located
at the end of the machine code. It should have the following signature:

data :: [Word32] -> MachineCodeM Location

Use circular programming to initialize the data segment counter to the final
value of the instruction counter.

3. The set32 instruction is quite long. It would be faster to load the location
from the data segment. Unfortunately to load from the data segment requires
loading the location in the data segment where the location that you want
is stored. Move the data segment to the beginning of the address space and
limit data segment locations to 25 bits. Now implement set32 by storing the
location in the data segment and loading the location (using set25). Revel
in the amount of circular programming you now have, but don’t forget to
add a jump instruction at the very beginning to jump over the data segment.

4. Implement push and pop instructions that operate on a specified fixed size
stack allocated in array 1.

5. Implement call and return instructions that saves and loads registers using
the stack developed in the previous exercise.

6. It may be advantageous to constantly keep one register set to 0 or one register
set high. Reduce the number of registers in the assembly language and

49

The Monad.Reader Issue 6

rewrite the macros to take advantage of one register that is constantly 0 or
one register that is constantly high.

50

Russell O’Connor: Assembly: Circular Programming with Recursive do

Appendix

read arr ix dst = writeInstruction $ Read dst arr ix

write src arr ix = writeInstruction $ Write arr ix src

add src1 src2 dst = writeInstruction $ Add dst src1 src2

mul src1 src2 dst = writeInstruction $ Mul dst src1 src2

div src1 src2 dst = writeInstruction $ Div dst src1 src2

nand src1 src2 dst = writeInstruction $ Nand dst src1 src2

halt = writeInstruction $ Halt

alloc size dst = writeInstruction $ Alloc dst size

free ptr = writeInstruction $ Free ptr

out src = writeInstruction $ Output src

inp dst = writeInstruction $ Input dst

load ptr offset = writeInstruction $ Load ptr offset

-- Orth can only write 25 bit numbers

set25 val dst = writeInstruction $ Orth dst val

data T = T

not src dst =

nand src src dst

neg src dst T tmp = do

set25 0 tmp

not tmp tmp

mul src tmp dst

sub src1 src2 dst T tmp = do

neg src2 src2 T tmp

add src1 src2 dst

-- return src2 to it’s original value only if

-- src2 isn’t the destination

unless (dst==src2) $ neg src2 src2 T tmp

shftG op n src dst T tmp

| n < 25 = do

set25 (2^n) tmp

op src tmp dst

| otherwise = do

shftG op 24 src dst T tmp

shftG op (n-24) dst dst T tmp

51

The Monad.Reader Issue 6

shftr = shftG div

shftl = shftG mul

set32 val dst T tmp = do

set25 (val ‘shiftR‘ 16) dst

shftl 16 dst dst T tmp

set25 (val .&. 0xFFFF) tmp

add tmp dst dst

jmp offset T tmp = do

set25 0 tmp

load tmp offset

ljmp l T tmp1 tmp2 = do

lset l tmp1 T tmp2

jmp tmp1 T tmp2

-- immediate out

iout c T tmp = do {

set25 (fromIntegral $ fromEnum c) tmp;

out tmp;

}

zero dst = do {

set25 0 dst;

}

-- set register to all ones

high dst = do {

zero dst;

not dst dst;

}

jeq cond1 cond2 offset T tmp1 tmp2 tmp3 = do {

sub cond1 cond2 tmp1 T tmp2;

jeqz tmp1 offset T tmp2 tmp3;

}

52

ljeqz cond l T tmp1 tmp2 tmp3 = do {

lset l tmp1 T tmp2;

jeqz cond tmp1 T tmp2 tmp3;

}

ljeq cond1 cond2 l T tmp1 tmp2 tmp3 tmp4 = do {

lset l tmp1 T tmp2;

jeq cond1 cond2 tmp1 T tmp2 tmp3 tmp4;

}

assemble = encodeAsm . link

	Wouter Swierstra: Editorial
	Bernie Pope: Getting a Fix from the Right Fold
	Dan Piponi: Adventures in Classical-Land
	Russell O'Connor: Assembly: Circular Programming with Recursive do

