
[Faculty of Science
Information and Computing Sciences]

Haskell, Do You Read Me?

Constructing and Composing Efficient Top-down Parsers
at Runtime

Marcos Viera Doaitse Swierstra Eelco Lempsink

Instituto de Computación, Universidad de la República, Uruguay
Dept. of Information and Computing Sciences, Utrecht University

September 25, 2008

[Faculty of Science
Information and Computing Sciences]

2

Symptoms
data T1 = T1 :<: T1

| T1 :>: T1
| C
deriving (Read ,Show)

infixl 5 :<:
infixr 6 :>:
x

, x ′, x ′′

:: T1
x = C :<: C :<: C

x ′ = (read ◦ show) $ C :<: C :<: C
x ′′ = read "C :<: C :<: C"

*Main> x
(C :<: C) :<: C

[Faculty of Science
Information and Computing Sciences]

2

Symptoms
data T1 = T1 :<: T1

| T1 :>: T1
| C
deriving (Read ,Show)

infixl 5 :<:
infixr 6 :>:
x , x ′

, x ′′

:: T1
x = C :<: C :<: C
x ′ = (read ◦ show) $ C :<: C :<: C

x ′′ = read "C :<: C :<: C"

*Main> x’
(C :<: C) :<: C

[Faculty of Science
Information and Computing Sciences]

2

Symptoms
data T1 = T1 :<: T1

| T1 :>: T1
| C
deriving (Read ,Show)

infixl 5 :<:
infixr 6 :>:
x , x ′, x ′′ :: T1
x = C :<: C :<: C
x ′ = (read ◦ show) $ C :<: C :<: C
x ′′ = read "C :<: C :<: C"

*Main> x’’
*** Exception: Prelude.read: no parse

[Faculty of Science
Information and Computing Sciences]

2

Symptoms
data T1 = T1 :<: T1

| T1 :>: T1
| C
deriving (Read ,Show)

infixl 5 :<:
infixr 6 :>:
x , x ′, x ′′ :: T1
x = C :<: C :<: C
x ′ = (read ◦ show) $ C :<: C :<: C
x ′′ = read "C :<: C :<: C"

Ideally, you should be able to read every valid constant expres-
sion.

[Faculty of Science
Information and Computing Sciences]

3

Parentheses

*Main> time (read "C" :: T1)
C
CPU Time: 0 ms

*Main> time (read "(((((C)))))" :: T1)
C
CPU Time: 74 ms

*Main> time (read "((((((C))))))" :: T1)
C
CPU Time: 389 ms

*Main> time (read "(((((((C)))))))" :: T1)
C
CPU Time: 1753 ms

[Faculty of Science
Information and Computing Sciences]

3

Parentheses

*Main> time (read "C" :: T1)
C
CPU Time: 0 ms

*Main> time (read "(((((C)))))" :: T1)
C
CPU Time: 74 ms

*Main> time (read "((((((C))))))" :: T1)
C
CPU Time: 389 ms

*Main> time (read "(((((((C)))))))" :: T1)
C
CPU Time: 1753 ms

[Faculty of Science
Information and Computing Sciences]

3

Parentheses

*Main> time (read "C" :: T1)
C
CPU Time: 0 ms

*Main> time (read "(((((C)))))" :: T1)
C
CPU Time: 74 ms

*Main> time (read "((((((C))))))" :: T1)
C
CPU Time: 389 ms

*Main> time (read "(((((((C)))))))" :: T1)
C
CPU Time: 1753 ms

[Faculty of Science
Information and Computing Sciences]

3

Parentheses

*Main> time (read "C" :: T1)
C
CPU Time: 0 ms

*Main> time (read "(((((C)))))" :: T1)
C
CPU Time: 74 ms

*Main> time (read "((((((C))))))" :: T1)
C
CPU Time: 389 ms

*Main> time (read "(((((((C)))))))" :: T1)
C
CPU Time: 1753 ms

[Faculty of Science
Information and Computing Sciences]

4

Breadth-first Parsing

The language which is actually recognised by the generated
read function is described by the non left-recursive grammar:

T1 (n)→ T1 (6) ":<:" T1 (6)
| T1 (7) ":>:" T1 (7)
| "C"
| "(" T1 (0) ")"

(n 6 5)
(n 6 6)
(n 6 10)
(n 6 10)

Three parallel parsers are started up for the first ’(’, and so on
recursively.

[Faculty of Science
Information and Computing Sciences]

4

Breadth-first Parsing

The language which is actually recognised by the generated
read function is described by the non left-recursive grammar:

T1 (n)→ T1 (6) ":<:" T1 (6)
| T1 (7) ":>:" T1 (7)
| "C"
| "(" T1 (0) ")"

(n 6 5)
(n 6 6)
(n 6 10)
(n 6 10)

Three parallel parsers are started up for the first ’(’, and so on
recursively.

[Faculty of Science
Information and Computing Sciences]

5

Common Left-factors

Unfortunately the problem also shows up for more reasonable
expressions such as C :>: (C :>: (C :>: ...)).

We remove the conditions, and encode them in the
non-terminals.

T1 (0 . . 5) → T1 (6) ":<:" T1 (6) | T1 (6)
T1 (6) → T1 (7) ":>:" T1 (7) | T1 (7)
T1 (7 . . 10)→ "C"

| "(" T1 (0) ")"

We see that some alternatives start with the same non-terminal
symbol.

[Faculty of Science
Information and Computing Sciences]

5

Common Left-factors

Unfortunately the problem also shows up for more reasonable
expressions such as C :>: (C :>: (C :>: ...)).

We remove the conditions, and encode them in the
non-terminals.

T1 (0 . . 5) → T1 (6) ":<:" T1 (6) | T1 (6)
T1 (6) → T1 (7) ":>:" T1 (7) | T1 (7)
T1 (7 . . 10)→ "C"

| "(" T1 (0) ")"

We see that some alternatives start with the same non-terminal
symbol.

[Faculty of Science
Information and Computing Sciences]

6

The Problem

I Derived read functions treat all operators as being
non-associative, despite their declared associativities and
precedences.

I Derived show functions generate the needed extra
parentheses, in order to make read ◦ show work.

I These extra parentheses make parsing take exponential
time.

I Common left-factors have a similar effect.

[Faculty of Science
Information and Computing Sciences]

6

The Problem

I Derived read functions treat all operators as being
non-associative, despite their declared associativities and
precedences.

I Derived show functions generate the needed extra
parentheses, in order to make read ◦ show work.

I These extra parentheses make parsing take exponential
time.

I Common left-factors have a similar effect.

[Faculty of Science
Information and Computing Sciences]

6

The Problem

I Derived read functions treat all operators as being
non-associative, despite their declared associativities and
precedences.

I Derived show functions generate the needed extra
parentheses, in order to make read ◦ show work.

I These extra parentheses make parsing take exponential
time.

I Common left-factors have a similar effect.

[Faculty of Science
Information and Computing Sciences]

6

The Problem

I Derived read functions treat all operators as being
non-associative, despite their declared associativities and
precedences.

I Derived show functions generate the needed extra
parentheses, in order to make read ◦ show work.

I These extra parentheses make parsing take exponential
time.

I Common left-factors have a similar effect.

[Faculty of Science
Information and Computing Sciences]

7

How Does the Problem Arise?

infix 5 :+:
infix 6 : ∗ :
data T2 a = T2 a :+: T2 a

| a : ∗ : T2 a
| C2
deriving Read

t2 :: T2 (T2 Int)
t2 = read "(3 :*: C2) :*: C2"

The function read is a member of the class Read :

I read functions are elements in dictionaries

I instance-declarations compose new dictionaries out of
existing dictionaries at run-time

I hence read functions are to be composed at run-time

[Faculty of Science
Information and Computing Sciences]

7

How Does the Problem Arise?

infix 5 :+:
infix 6 : ∗ :
data T2 a = T2 a :+: T2 a

| a : ∗ : T2 a
| C2
deriving Read

t2 :: T2 (T2 Int)
t2 = read "(3 :*: C2) :*: C2"

The function read is a member of the class Read :

I read functions are elements in dictionaries

I instance-declarations compose new dictionaries out of
existing dictionaries at run-time

I hence read functions are to be composed at run-time

[Faculty of Science
Information and Computing Sciences]

7

How Does the Problem Arise?

infix 5 :+:
infix 6 : ∗ :
data T2 a = T2 a :+: T2 a

| a : ∗ : T2 a
| C2
deriving Read

t2 :: T2 (T2 Int)
t2 = read "(3 :*: C2) :*: C2"

The function read is a member of the class Read :

I read functions are elements in dictionaries

I instance-declarations compose new dictionaries out of
existing dictionaries at run-time

I hence read functions are to be composed at run-time

[Faculty of Science
Information and Computing Sciences]

7

How Does the Problem Arise?

infix 5 :+:
infix 6 : ∗ :
data T2 a = T2 a :+: T2 a

| a : ∗ : T2 a
| C2
deriving Read

t2 :: T2 (T2 Int)
t2 = read "(3 :*: C2) :*: C2"

The function read is a member of the class Read :

I read functions are elements in dictionaries

I instance-declarations compose new dictionaries out of
existing dictionaries at run-time

I hence read functions are to be composed at run-time

[Faculty of Science
Information and Computing Sciences]

8

The Bad News

I Bottom-up parsers do not compose at all, and all perform
an analysis of the complete grammar (YACC, Happy)

I Top-down parsers do not compose efficiently for arbitrary
grammars, and may lead to left-recursive parsers if no care
is taken:

data T1 a = a : ∗ : Int deriving Read
data T2 = T1 T2 :+: Int deriving Read

I Grammars can be composed!

[Faculty of Science
Information and Computing Sciences]

8

The Bad and the Good News

I Bottom-up parsers do not compose at all, and all perform
an analysis of the complete grammar (YACC, Happy)

I Top-down parsers do not compose efficiently for arbitrary
grammars, and may lead to left-recursive parsers if no care
is taken:

data T1 a = a : ∗ : Int deriving Read
data T2 = T1 T2 :+: Int deriving Read

I Grammars can be composed!

[Faculty of Science
Information and Computing Sciences]

9

Using Grammars instead of Parsers

data Exp1 = C1
data Exp2 =
A Exp1 | B Exp3 data Exp3 = C3

read = ...

read = ...

read = ...

gread = ...

derive parameterise generate

[Faculty of Science
Information and Computing Sciences]

9

Using Grammars instead of Parsers

data Exp1 = C1
data Exp2 =
A Exp1 | B Exp3 data Exp3 = C3

read = ...

read = ...

read = ...? ?

gread = ...

derive

parameterise generate

[Faculty of Science
Information and Computing Sciences]

9

Using Grammars instead of Parsers

data Exp1 = C1
data Exp2 =
A Exp1 | B Exp3 data Exp3 = C3

read = ...

read = ...

read = ...

gread = ...

derive parameterise

generate

[Faculty of Science
Information and Computing Sciences]

9

Using Grammars instead of Parsers

data Exp1 = C1
data Exp2 =
A Exp1 | B Exp3 data Exp3 = C3

grammar = ...

grammar = ...

grammar = ...

gread = ...

derive parameterise

generate

[Faculty of Science
Information and Computing Sciences]

9

Using Grammars instead of Parsers

data Exp1 = C1
data Exp2 =
A Exp1 | B Exp3 data Exp3 = C3

grammar = ...

grammar = ...

grammar = ...

gread = ...

derive parameterise generate

[Faculty of Science
Information and Computing Sciences]

10

The Class Gram

Instead of the class Read we introduce:

class Gram a where
grammar :: DGrammar a

where DGrammar is a data type describing grammatical
structures, including information about precedences.

Note that it is labelled with a type a, which is the data type
described by a value of type DGrammar a.
Now we can, just as for read define:

read :: Read a ⇒ String → a
gread :: Gram a ⇒ String → a

[Faculty of Science
Information and Computing Sciences]

10

The Class Gram

Instead of the class Read we introduce:

class Gram a where
grammar :: DGrammar a

where DGrammar is a data type describing grammatical
structures, including information about precedences.

Note that it is labelled with a type a, which is the data type
described by a value of type DGrammar a.

Now we can, just as for read define:

read :: Read a ⇒ String → a
gread :: Gram a ⇒ String → a

[Faculty of Science
Information and Computing Sciences]

10

The Class Gram

Instead of the class Read we introduce:

class Gram a where
grammar :: DGrammar a

where DGrammar is a data type describing grammatical
structures, including information about precedences.

Note that it is labelled with a type a, which is the data type
described by a value of type DGrammar a.
Now we can, just as for read define:

read :: Read a ⇒ String → a
gread :: Gram a ⇒ String → a

[Faculty of Science
Information and Computing Sciences]

11

Generating parsers from Data Types

Template
Haskell

Typed
Abstract

Syntax with
References

Parser

generates

is transformed into

[Faculty of Science
Information and Computing Sciences]

12

The Steps to be Taken

group Combine pieces of grammar together, introduce extra
non-terminals to represent the precedences.

leftcorner Remove possible left-recursion by applying the Left-Corner
Transform

leftfactoring Combine common prefixes of alternatives

compile Map the resulting Grammar onto a parser

parse Use the parser to read a value

gread :: Gram a ⇒ String → a
gread = (parse ◦ compile ◦ leftfactoring

◦ leftcorner ◦ group) grammar

[Faculty of Science
Information and Computing Sciences]

12

The Steps to be Taken

group Combine pieces of grammar together, introduce extra
non-terminals to represent the precedences.

leftcorner Remove possible left-recursion by applying the Left-Corner
Transform

leftfactoring Combine common prefixes of alternatives

compile Map the resulting Grammar onto a parser

parse Use the parser to read a value

gread :: Gram a ⇒ String → a
gread = (parse ◦ compile ◦ leftfactoring

◦ leftcorner ◦ group) grammar

[Faculty of Science
Information and Computing Sciences]

12

The Steps to be Taken

group Combine pieces of grammar together, introduce extra
non-terminals to represent the precedences.

leftcorner Remove possible left-recursion by applying the Left-Corner
Transform

leftfactoring Combine common prefixes of alternatives

compile Map the resulting Grammar onto a parser

parse Use the parser to read a value

gread :: Gram a ⇒ String → a
gread = (parse ◦ compile ◦ leftfactoring

◦ leftcorner ◦ group) grammar

[Faculty of Science
Information and Computing Sciences]

12

The Steps to be Taken

group Combine pieces of grammar together, introduce extra
non-terminals to represent the precedences.

leftcorner Remove possible left-recursion by applying the Left-Corner
Transform

leftfactoring Combine common prefixes of alternatives

compile Map the resulting Grammar onto a parser

parse Use the parser to read a value

gread :: Gram a ⇒ String → a
gread = (parse ◦ compile ◦ leftfactoring

◦ leftcorner ◦ group) grammar

[Faculty of Science
Information and Computing Sciences]

12

The Steps to be Taken

group Combine pieces of grammar together, introduce extra
non-terminals to represent the precedences.

leftcorner Remove possible left-recursion by applying the Left-Corner
Transform

leftfactoring Combine common prefixes of alternatives

compile Map the resulting Grammar onto a parser

parse Use the parser to read a value

gread :: Gram a ⇒ String → a
gread = (parse ◦ compile ◦ leftfactoring

◦ leftcorner ◦ group) grammar

[Faculty of Science
Information and Computing Sciences]

12

The Steps to be Taken

group Combine pieces of grammar together, introduce extra
non-terminals to represent the precedences.

leftcorner Remove possible left-recursion by applying the Left-Corner
Transform

leftfactoring Combine common prefixes of alternatives

compile Map the resulting Grammar onto a parser

parse Use the parser to read a value

gread :: Gram a ⇒ String → a
gread = (parse ◦ compile ◦ leftfactoring

◦ leftcorner ◦ group) grammar

[Faculty of Science
Information and Computing Sciences]

12

The Steps to be Taken

group Combine pieces of grammar together, introduce extra
non-terminals to represent the precedences.

leftcorner Remove possible left-recursion by applying the Left-Corner
Transform

leftfactoring Combine common prefixes of alternatives

compile Map the resulting Grammar onto a parser

parse Use the parser to read a value

gread :: Gram a ⇒ String → a
gread = (parse ◦ compile ◦ leftfactoring

◦ leftcorner ◦ group) grammar

[Faculty of Science
Information and Computing Sciences]

13

Types Abstract Syntax with Explicit References

I Right hand sides of productions contain references to
non-terminals

I We want to be able to inspect and transform the grammar

I We want to inspect the underlying graph structure

I Of which the nodes are labelled with different types

I So we use heterogeneous collections, i.e. we use nested
cartesian products, henceforth called Env -ironments

[Faculty of Science
Information and Computing Sciences]

13

Types Abstract Syntax with Explicit References

I Right hand sides of productions contain references to
non-terminals

I We want to be able to inspect and transform the grammar

I We want to inspect the underlying graph structure

I Of which the nodes are labelled with different types

I So we use heterogeneous collections, i.e. we use nested
cartesian products, henceforth called Env -ironments

[Faculty of Science
Information and Computing Sciences]

13

Types Abstract Syntax with Explicit References

I Right hand sides of productions contain references to
non-terminals

I We want to be able to inspect and transform the grammar

I We want to inspect the underlying graph structure

I Of which the nodes are labelled with different types

I So we use heterogeneous collections, i.e. we use nested
cartesian products, henceforth called Env -ironments

[Faculty of Science
Information and Computing Sciences]

13

Types Abstract Syntax with Explicit References

I Right hand sides of productions contain references to
non-terminals

I We want to be able to inspect and transform the grammar

I We want to inspect the underlying graph structure

I Of which the nodes are labelled with different types

I So we use heterogeneous collections, i.e. we use nested
cartesian products, henceforth called Env -ironments

[Faculty of Science
Information and Computing Sciences]

13

Types Abstract Syntax with Explicit References

I Right hand sides of productions contain references to
non-terminals

I We want to be able to inspect and transform the grammar

I We want to inspect the underlying graph structure

I Of which the nodes are labelled with different types

I So we use heterogeneous collections, i.e. we use nested
cartesian products, henceforth called Env -ironments

[Faculty of Science
Information and Computing Sciences]

14

References and Environments I

We introduce natural numbers, labelled with a type a
describing what is referred to, and a list of types env describing
the structure in which this a labelled object lives:

data Ref a env where
Zero :: Ref a (a, env)
Suc :: Ref a env ′ → Ref a (x , env ′)

data Equal a b where
Eq :: Equal a a

match :: Ref a env → Ref b env → Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x) (Suc y) = match x y
match = Nothing

[Faculty of Science
Information and Computing Sciences]

15

References and Environments II

data Env t use def where
Empty :: Env t use ()
Cons :: t a use → Env t use def ′

→ Env t use (a, def ′)

t a use :: a term of type t , describing a value of type a
contains references pointing into an environment labelled by
use. The parameter def describes the values actually existing in
the Env . If use equals def the environment is closed.

[Faculty of Science
Information and Computing Sciences]

16

DGrammar

data DGrammar a
= ∀env .DGrammar (Ref a env)

(Env DGram env env)
data DGram a env = DGD (DLNontDefs a env)

| DGG (DGrammar a)

newtype DRef a env = DRef (Ref a env , Int)

newtype DLNontDefs a env
= DLNontDefs [(DRef a env ,DProductions a env)]

[Faculty of Science
Information and Computing Sciences]

17

Continued ..

newtype DProductions a env
= DPS{unDPS :: [DProd a env]}

data DProd a env where
DSeq :: DSymbol b env → DProd (b → a) env

→ DProd a env
DEnd :: a → DProd a env

data DSymbol a env where
DNont :: DRef a env → DSymbol a env
DTerm :: Token → DSymbol Token env

[Faculty of Science
Information and Computing Sciences]

18

Typed Abstract Syntax

instance Gram Exp where
grammar = DGrammar 0 envExp

envExp :: Env DGram (Exp, ()) (Exp, ())
envExp = consD (nonts 0) Empty

where
nonts Exp = DLNontDefs

[

(DRef (Exp, 6)
,DPS [dNont (

Exp

, 6) .#. dTerm

":+:"

.#.
dNont (

Exp

, 7) .#. dEnd plus]
)

,

(DRef (Exp, 10)
,DPS [dTerm

"C"

.#. dEnd (const C)
,

dTerm

"("

.#. dNont (

Exp

, 0) .#.
dTerm

")"

.#. dEnd parenT

]
)

]

plus e1 e2 = e2 :+: e1

data Exp = Exp :+: Exp
| C

infixl 6 :+:

[Faculty of Science
Information and Computing Sciences]

18

Typed Abstract Syntax

instance Gram Exp where
grammar = DGrammar 0 envExp

envExp :: Env DGram (Exp, ()) (Exp, ())
envExp = consD (nonts 0) Empty

where
nonts Exp = DLNontDefs

[

(DRef (Exp, 6)
,DPS [dNont (

Exp

, 6) .#. dTerm

":+:"

.#.
dNont (

Exp

, 7) .#. dEnd plus]
)

,

(DRef (Exp, 10)
,DPS [dTerm

"C"

.#. dEnd (const C)

,

dTerm

"("

.#. dNont (

Exp

, 0) .#.
dTerm

")"

.#. dEnd parenT]
)

]

plus e1 e2 = e2 :+: e1

data Exp = Exp :+: Exp
| C

infixl 6 :+:

[Faculty of Science
Information and Computing Sciences]

18

Typed Abstract Syntax

instance Gram Exp where
grammar = DGrammar 0 envExp

envExp :: Env DGram (Exp, ()) (Exp, ())
envExp = consD (nonts 0) Empty

where
nonts Exp = DLNontDefs

[

(DRef (Exp, 6)
,DPS [

dNont (Exp

, 6

) .#. dTerm ":+:" .#.
dNont (Exp

, 7

)

.#. dEnd plus]
)

,

(DRef (Exp, 10)
,DPS [

dTerm "C"

.#. dEnd (const C)

, dTerm "(" .#. dNont (Exp

, 0

) .#.
dTerm ")"

.#. dEnd parenT]
)

]

plus e1 e2 = e2 :+: e1

data Exp = Exp :+: Exp
| C

infixl 6 :+:

[Faculty of Science
Information and Computing Sciences]

18

Typed Abstract Syntax

instance Gram Exp where
grammar = DGrammar 0 envExp

envExp :: Env DGram (Exp, ()) (Exp, ())
envExp = consD (nonts 0) Empty

where
nonts Exp = DLNontDefs

[

(DRef (Exp, 6)
,

DPS [dNont (Exp, 6) .#. dTerm ":+:" .#.
dNont (Exp, 7)

.#. dEnd plus

]

)

,

(DRef (Exp, 10)
,

DPS [dTerm "C"

.#. dEnd (const C)

, dTerm "(" .#. dNont (Exp, 0) .#.
dTerm ")"

.#. dEnd parenT

]

)

]

plus e1 e2 = e2 :+: e1

data Exp = Exp :+: Exp
| C

infixl 6 :+:

[Faculty of Science
Information and Computing Sciences]

18

Typed Abstract Syntax

instance Gram Exp where
grammar = DGrammar 0 envExp

envExp :: Env DGram (Exp, ()) (Exp, ())
envExp = consD (nonts 0) Empty

where
nonts Exp = DLNontDefs

[(DRef (Exp, 6)
,DPS [dNont (Exp, 6) .#. dTerm ":+:" .#.

dNont (Exp, 7)

.#. dEnd plus

]
)

, (DRef (Exp, 10)
,DPS [dTerm "C"

.#. dEnd (const C)

, dTerm "(" .#. dNont (Exp, 0) .#.
dTerm ")"

.#. dEnd parenT

]
)

]

plus e1 e2 = e2 :+: e1

data Exp = Exp :+: Exp
| C

infixl 6 :+:

[Faculty of Science
Information and Computing Sciences]

18

Typed Abstract Syntax

instance Gram Exp where
grammar = DGrammar 0 envExp

envExp :: Env DGram (Exp, ()) (Exp, ())
envExp = consD (nonts 0) Empty

where
nonts Exp = DLNontDefs

[(DRef (Exp, 6)
,DPS [dNont (Exp, 6) .#. dTerm ":+:" .#.

dNont (Exp, 7) .#. dEnd plus]
)

, (DRef (Exp, 10)
,DPS [dTerm "C" .#. dEnd (const C)

, dTerm "(" .#. dNont (Exp, 0) .#.
dTerm ")" .#. dEnd parenT]

)
]

plus e1 e2 = e2 :+: e1

data Exp = Exp :+: Exp
| C

infixl 6 :+:

[Faculty of Science
Information and Computing Sciences]

18

Typed Abstract Syntax
instance Gram Exp where

grammar = DGrammar 0 envExp
envExp :: Env DGram (Exp, ()) (Exp, ())
envExp = consD (nonts 0) Empty

where
nonts Exp = DLNontDefs

[(DRef (Exp, 6)
,DPS [dNont (Exp, 6) .#. dTerm ":+:" .#.

dNont (Exp, 7) .#. dEnd plus]
)

, (DRef (Exp, 10)
,DPS [dTerm "C" .#. dEnd (const C)

, dTerm "(" .#. dNont (Exp, 0) .#.
dTerm ")" .#. dEnd parenT]

)
]

plus e1 e2 = e2 :+: e1

data Exp = Exp :+: Exp
| C

infixl 6 :+:

[Faculty of Science
Information and Computing Sciences]

19

An Intermediate result

A → "C1" A C1 | "(" A (
A A → ":<:" B A A | ":<:" B
A B → A A | ε
A C → ":>:" B A B | A B
A C1 → A C
A (→ A ")" A C
B → "C1" B C1 | "(" B (
B C → ":>:" B | ε
B C1 → B C
B (→ A ")" B C
C → "C1" C C1 | "(" C (
C C1 → ε
C (→ A ")"

1. We have introduced new non-terminals

2. Old non-terminals have new productions

[Faculty of Science
Information and Computing Sciences]

20

The Transformations

All the transformations can be expressed in terms of an
arrow-like type:

data Trafo m t a b =
Trafo (∀env1 .m env1 →

∃env2 .
(m env2
, ∀s. a s → T env2 s → Env t s env1 →

(b s, T env1 s , Env t s env2)
)

[Faculty of Science
Information and Computing Sciences]

21

Results I

n

t(s)
read

gread

1 2 3 4 5 6 7 8 9 1011121314151617
0

10

20

30

40

50

60

70

Figure: Execution times of reading C :> (C :>: ...)

[Faculty of Science
Information and Computing Sciences]

22

Reading a Large Data Type

n(×103)

t(s)

read

gread

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Overhead is very small, and that thanks to the use of the
UU-parsers also parse times do hardly increase.

[Faculty of Science
Information and Computing Sciences]

23

Why is this so complicated ...

1. The problem is complicated

2. We do in 350 lines more than Bison (10.000 lines) is doing

3. Extra constructors are needed because we need existentials

4. If we have lazy evaluation, we also want it at the type level!

f :: ∀a.(a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

[Faculty of Science
Information and Computing Sciences]

23

Why is this so complicated ...

1. The problem is complicated

2. We do in 350 lines more than Bison (10.000 lines) is doing

3. Extra constructors are needed because we need existentials

4. If we have lazy evaluation, we also want it at the type level!

f :: ∀a.(a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

[Faculty of Science
Information and Computing Sciences]

23

Why is this so complicated ...

1. The problem is complicated

2. We do in 350 lines more than Bison (10.000 lines) is doing

3. Extra constructors are needed because we need existentials

4. If we have lazy evaluation, we also want it at the type level!

f :: ∀a.(a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

[Faculty of Science
Information and Computing Sciences]

23

Why is this so complicated ...

1. The problem is complicated

2. We do in 350 lines more than Bison (10.000 lines) is doing

3. Extra constructors are needed because we need existentials

4. If we have lazy evaluation, we also want it at the type level!

f :: ∀a.(a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

[Faculty of Science
Information and Computing Sciences]

23

Why is this so complicated ...

1. The problem is complicated

2. We do in 350 lines more than Bison (10.000 lines) is doing

3. Extra constructors are needed because we need existentials

4. If we have lazy evaluation, we also want it at the type level!

f :: ∀a.(a → ∃b (b, a, b → b → Int))
let (b, a, g) = f b
in g b a

[Faculty of Science
Information and Computing Sciences]

24

To Take Home

I The transformation library has been used unmodified for all
the transformations

I The library can be used for any collection of abstract
syntax trees, which contain references to each other, and
of which the structure has to be inspected

	Symptoms
	Problem
	Fundamental Problems

	Solution
	Results
	Conclusion

