
 Modular Evaluation and Interpreters
Using Monads

and Type Classes

by Dan Popa , Ro/Haskell Group
Dept. Comp.Sci. Univ. Bacău, Romania

popavdan@yahoo.com

based on papers provided by the Haskell
community and some other resources.

Anglo Haskell 2008

Abstract
 During the last decade, the expression evaluators (inter-

preters) and the list monad had attracted both mathe-
maticians (especially from the field of Categories Theo-
ry) and computer scientists.

Abstract
 During the last decade, the expression evaluators (inter-

preters) and the list monad had attracted both mathe-
maticians (especially from the field of Categories Theo-
ry) and computer scientists.

 For the last group, the main kind of applications comes
from the field of DSL interpretation.

Abstract
 During the last decade, the expression evaluators (inter-

preters) and the (list) monad had attracted both mathe-
maticians (especially from the field of Categories Theo-
ry) and computer scientists.

 For the last group, the main kind of applications comes
from the field of DSL interpretation.

 As a consequence of our research, we are able to intro-
duce a new kind of modular interpreter or expression
evaluator, which can be build by importing modular
components into a main Haskell program.

Modularity,OK ! But how to get it ?:
1) Modular parser = ? Problem solved ! Parser comb.

2) Modular trees = ? Nobody seems to try it !

3) Modular implementation of the interpreter = ?
 interpret :: Term -> Env -> M Value – not modular
 should be replaced by something else.

Modularity! Let's show how to get it :
1)In order to keep the parser of the DSL modular, parser
combinators was used.

Modularity! Let's show how to get it :
1)In order to keep the parser of the DSL modular, parser
combinators was used.
2)In order to keep the source (and the AST) modular

we have replaced the data constructors by regular
functions over the list monad, inspired by an idea of
Simon P.J from the [Haskell Report].

He said that data constructors are in fact just simple
functions.

Modularity! Let's show how to get it :
1)In order to keep the parser of the DSL modular, parser
combinators was used.
2)In order to keep the source (and the AST) modular

we have replaced the data constructors by regular
functions over the list monad, inspired by an idea of
Simon P.J from the [Haskell Report].

He said that data constructors are in fact just simple
functions.
3)This gave us the general idea of the replacement of

data constructors by functions over monadic actions,
called by us "pseudoconstructors".

Modularity! Let's show how to get it :
The modular evaluator was written in do-notation,
based on the idea that expressions should evaluate
themself nor by the help of an interpret-function as in
[Tim Sheard and Abidine. et all].

Modularity! Let's show how to get it :
The modular evaluator was written in do-notation, on
the idea that expressions should evaluate
them self nor by the help of an interpret-function as in
[Tim Sheard and Abidine. et all].

As a consequence, the useful data declarations which
usually appears in DSL implementations are completely
missing, shortening the source and reducing the work of
the programmer.

1) Tree declarations like this are harmfull
(from the modularity point of view)

data Exp = Constant Int

 | Variable String

 | Minus Exp Exp

 | Greater Exp Exp

 | Times Exp Exp

 deriving Show

1') Drop the declarations like this one,too !

data Com = Assign String Exp

 | Seq Com Com

 | Cond Exp Com Com

 | While Exp Com

 | Declare String Exp Com

 | Print Exp

 deriving Show

2) A new vision of monadic semantics

A new vision of monadic semantics is now introduced. The
semantics is not a function:

interp :: Term -> Environment -> Monad

2) A new vision of monadic semantics

A new vision of monadic semantics is now introduced. The
semantics is not a function:

interp :: Term -> Environment -> Monad
but more likely a sort of

Monad -> Monad -> ...Monad

where the name is given by the pseudoconstructor itself.

2) A new vision of monadic semantics
Example:

A new vision of monadic semantics is now introduced. The
semantics is not a function:

interp :: Term -> Environment -> Monad
but more likely a sort of

Monad -> Monad -> ...Monad

where the name is given by the pseudoconstructor itself.

Plus :: Exp -> Exp -> Exp

will be replaced by a plus:

2) A new vision of monadic semantics
Example:

A new vision of monadic semantics is now introduced. The
semantics is not a function:

interp :: Term -> Environment -> Monad
but more likely a sort of

Monad -> Monad -> ...Monad

where the name is given by the pseudoconstructor itself.

Plus :: Exp -> Exp -> Exp

will be replaced by a plus:

plus :: [a] -> [a] -> [a] or a plus :: M a -> M a -> M a

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent being
replaced by a set of functions.

data Exp = Constant Int

 | Variable String

 | Minus Exp Exp

 | Greater Exp Exp

 | Times Exp Exp

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent being
replaced by a set of functions.
 . . . are replaced by . . .

constant :: Integer -> [Integer]

variable :: String -> [Integer]

 minus :: [Integer] -> [Integer] -> [Integer]

 greater :: [Integer] -> [Integer] -> [Integer]

 times :: [Integer] -> [Integer] -> [Integer]

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent being
replaced by a set of functions. . . . or even more generally . . .

constant :: Integer -> M Integer

variable :: String -> M Integer

minus :: M Integer -> M Integer -> M Integer

greater :: M Integer -> M Integer -> M Integer

times :: M Integer -> M Integer -> M Integer

... M being an other monad, not only the list monad.

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent being
replaced by a set of functions.

So: Minus (Variable “x”) (Variable “y”)

will be replaced by a slightly different version:

 minus (variable “x”) (variable “y”) (*)

where minus, variable and so ...are called “pseudoconstructors”.

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent being
replaced by a set of functions.

So: Minus (Variable “x”) (Variable “y”)

will be replaced by a slightly different version:

 minus (variable “x”) (variable “y”) (*)

where minus, variable and so ...are called “pseudoconstructors”.

Remark: The relation (*) are representing both syntax (being
unevaluated) and semantics (when Haskel's lazy evaluation
mechanism decides to compute the final value) in the same time!

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent being
replaced by a set of functions.
2. There is no needs for such functions to be together, in the
same module.

We can describe / declare:

log :: [Float] -> [Float] -> [Float] in a module and
plus :: [Float] -> [Float] -> [Float] in an other module

and still be able to mix them in syntax and computations:

(plus (variable “x”) (log (constant 2)(variable “y”))

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent being
replaced by a set of functions.
2. There is no needs for such functions to be together, in the
same module.

Or even more, we can describe / declare:

log :: [Float] -> [Float] -> [Float] in a module and
plus :: [Float] -> [Float] -> [Float] in an other module

and still be able to mix them in syntax and computations:

(plus (variable “x”) (log (constant 2)(variable “y”))

 . . . M being any other selected monad

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent, being
replaced by a set of functions.
2. There is no needs for such functions to be together, in the
same module.
We can spread such functions in different modules, providing
modularity.And, last but not least, because of the monad:

3. We can use the do-notation in order to express computations:

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Float]

2) A new vision of monadic semantics .
Consequences:

1. The data declarations of the trees will be absent, being
replaced by a set of functions.
2. There is no needs for such functions to be together, in the
same module.
We can spread such functions in different modules, providing
modularity.And, last but not least, because of the monad:

3.Remember: The traditional solution was usually more complex
and all those “do”-s were stick together in the same function.

 do { vx <- interp x env;
 vy <- interp y env;
 return (vx + vy); } :: M Float

2) A new vision of monadic semantics.
Conclusions:

A new vision of monadic semantics is now introduced. The
semantics is not a function:

interp :: Term -> Environment -> Monad
but more likely a sort of

Monad -> Monad -> ...Monad
 specification in contrast with the papers [P.W.123]
of Philip. Wadler.

Remember idea and definition of pseudoconstructors functions
over monadic actions. The pseudoconstructors are replacing
the data values constructors from the right side of a data
declaration.

3)Where is the environment when we need
it ?

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: M Float

The code seems to have the environment hidden or no
environment at all !

Idea: If an environment is needed (and usually it
is !) the list monad may be replaced with an other
state or writer monad. Anyway, for simple expres-
sions using constants and operators the list monad
is enough.

4) May we have overloaded functions ?

 Usually, some arithmetic operators are overloaded:

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Float]

 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Integer]

 Can we use two or more kind of plus in different modules?

4) May we have overloaded functions ?
Answer:

YES, using multiparameter type classes

module MyPlusFloat where
import MyFloat
import ClassPlus
instance Plus Float Float Float where
 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Float]

Exercise: Write similars modules: MyPlusInt,
MyPlusChar, MyPlusComplex, ...

4) May we have overloaded functions ?
Answer:
YES, using multiparameter type classes
module MyPlusFloat where
import MyFloat
import ClassPlus
instance Plus Float Float Float where
 plus x y = do { vx <- x;
 vy <- y;
 return (vx + vy); }
 :: [Float]

-- Example: modular specification for an
overloaded “plus” using a multiparameter
type class: ClassPlus. It looks like...

4) Example: modular specification for an
overloaded “plus” using a multiparameter type
class: ClassPlus. It looks like...

module ClassPlus where
class Plus a b c where
 plus :: [a] -> [b] -> [c]

{--
 A triple of types a b c belongs to the Plus
Class “ClassPlus” if (and only if)

 there exist a function “plus” having the
 signature as above.
 The hypothesis that three types belongs (as
a triple) to the ClassPluss will be
provided by an instantiation of that
class ...Pleas go back to see it again !!!

--}

4) May we have overloaded functions ?
YES, even with a different monad, M.
module ClassPlus where
class Plus a b c where
 plus :: M a -> M b -> M c

{--
 You are free to use any traditionaly used
monad, for example the StOut monad from the
paper of [Tim Sheared], or any other monad
built by help of transformers.

--}

4) But how are the numbers defined ?

4) But how are the numbers defined ?
First solution:
module MyNum where
--- Modular evaluator for Integers producing
monadic values [Integer] in the list monad.

evalnum :: Integer -> [Integer]
evalnum x = [x]
---The pseudoconstructor is producing monadic
values, in this case (one element) lists .

constant :: Integer -> [Integer]
constant x = do { vx <- evalnum x ;
 return vx ; }
...well,we will not discuss optimization,yet!

4)When an evaluator / interpreter is build
all the requierd modules are used:
module ParserSumaCifre where --main prg.
import Monad --use monads,
import ParseLib --parsers,
import MyNum --numbers,
import ClassPlus --plus,
import ClassMinus --minus:
import MyPlusNum --one plus
import MyMinusNum --one minus

-- Remark: Other parser combinators (like
Parsec) may be used instead of ParseLib, or
we can work only with pseudoconstructors:

4') Run an evaluation: pseudoconstructor
and overloading specification

4'') Optimizing a module using monad's
laws:

module MyChar where

evalchar :: Char -> [Char]

evalchar x = [x]

----Old implementation of the pseudoconstructor

--char ::Char -> [Char]

--char x = do { vx <- evalchar x;

-- return vx; } ----Applying monad's law =>

----New implementation of the pseudoconstructor

char ::Char -> [Char]

char x = [x]

5)Have we lost space, gaining modularity?

Three solutions was compared:

Cyclam = Standard evaluator:
 Parser , Trees, Integer

Yellow = Modified std.evaluator:
 Parser, Trees, [Integer], Lists
 --to see how much overload is got by lists

Magenta = New monadic evaluator:
 Parser, no Trees, Modularity, [Integer],ListMonad

5) Space consumed adding lists and
modularization: Conclusions

Ading lists increases space with aprox 2.5%
Adding modularity increases space again with aprox
 2-3%

5') Final conclusion:
 +10% space is an acceptable price for the

modularity of the languages
Diagram of our small example:

6)Anexa: Traditional evaluator

Usually, an evaluator receive an expresion, a context and produces a

result stored by a monadic “capsule”.

eval1 :: Exp -> Index -> M Int

eval1 exp index = case exp of

 Constant n -> return n

 Variable x -> let loc = position x index

 in getfrom loc

 Minus x y -> do { a <- eval1 x index ;

 b <- eval1 y index ;

 return (a-b) }

6)Anexa: Traditional evaluator (cont.)

 Greater x y -> do { a <- eval1 x index ;

 b <- eval1 y index ;

 return (if a > b

 then 1

 else 0) }

 Times x y -> do { a <- eval1 x index ;

 b <- eval1 y index ;

 return (a * b) }

6) Selective Bibliography:

References, names, papers, books, sites used:

● Peyton Jones Simon : Haskell 98 Language and Libraries- The Revised
Report, Cambridge , September 2002

● Leijen Daan – a lot of papers concerning Parsec
● Tim Sheard and Abidine, DSL implementation using staging and monads...
● Hutton Graham; Meijer Erik - a lot of papers on monadic parsing
● Peyton Jones Simon - The History of Haskell
● Espinosa David, Semantic Lego, PhD Thesis, Columbia University, 1995
● haskell org – pages including those of monad laws
● Autrijus/Audrey Tang- all about Perl 6
● Philip Wadler - a lot of papers concerning monadic interpreters
● Zenger Matthias – his Ph.D Thesis

● Extra readings: -- interpreters evaluators and virtual machines, the list monad
... sorry if somebody else is missing...

