
Yhc: The York Haskell Compiler

By
Tom Shackell

What?

● Yhc is a rewrite of the back end of the nhc98
system.

● The back-end of the compiler is replaced.
● The runtime system is replaced.
● The instruction set is different.
● The Prelude is heavily modified.

Why?

● It was written to address some issues with the
nhc98 back end.

● In particular: The high bit problem.
● Also as an experiment: Can we make nhc98

more portable?

The High Bit Problem

Graph Reduction

● Lazy functional languages are usually
implemented using graph reduction.

● Haskell expressions are represented by graphs.

● The expression 'sum [1,2]' might be represented
by the graph:

sum :

1

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

:

2

[]

Reduction

sum

:

1

:

2

[]

Reduction

sum

:

1

:

2

[]

Reduction

sum

:

1

:

2

[]

3

Reduction

IND 3

Heap Node

We can see there are 4 types of graph node

:Constructor sumThunk

Blackholed Thunk INDIndirection

In nhc and Yhc these graph nodes are represented
with 4 types of heap node

sum

Heap Nodes in nhc

Constructor Information 10

Function Information Pointer 1

Function Information Pointer 11

0

Redirection Pointer 00

Constructor

Thunk

Blackholed Thunk

Indirection

sum

The “High Bit” problem

Constructor Information 10

Function Information Pointer 1

Function Information Pointer 11

0

Redirection Pointer 00

Constructor

Thunk

Blackholed Thunk

Indirection

● nhc assumes that it can use the topmost bit of a pointer to store information.

● This is not always the case: many modern Linux-x86 kernels allocate
memory in addresses too high to fit in 31bits.

Heap Nodes in Yhc

Constructor Information Pointer 01

Function Information Pointer 1

Function Information Pointer 1

Redirection Pointer 00

Constructor

Thunk

Blackholed Thunk

Indirection

0

1

● Yhc makes sure that all FInfo structures are 4 byte aligned. Freeing up a bit
at the bottom for Thunk nodes.

● It also represents constructors by using a pointer to the information about
the constructor, rather than encoding the information into the heap word.

Instruction Sets

● The instruction set for Yhc is much simpler than
for nhc.

● Both are based on stack machines.
● However, nhc has instructions for directly

manipulating both the heap and the stack.
● Where as Yhc only directly manipulates the

stack.

Instructions
main :: IO ()
main = putStrLn (show 42)

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

Yhc instructions

main():
 PUSH_INT 42
 MK_AP show
 MK_AP putStrLn
 RETURN_EVAL

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

Stack

Heap

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

Constants

Stack

Heap

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

show

Constants

ConstantsStack

Heap

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

show

42

ConstantsStack

Heap

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

show

42

ConstantsStack

Heap

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

show

42

putStrLn

ConstantsStack

Heap

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

show

42

putStrLn

ConstantsStack

Heap

nhc instructions

main():
 HEAP_CVAL show
 HEAP_INT 42
 PUSH_HEAP
 HEAP_CVAL putStrLn
 HEAP_OFF -3
 RETURN_EVAL

show

42

putStrLn

Stack

HeapYhc instructions

main():
 PUSH_INT 42
 MK_AP show
 MK_AP putStrLn
 RETURN_EVAL

Stack

HeapYhc instructions

main():
 PUSH_INT 42
 MK_AP show
 MK_AP putStrLn
 RETURN_EVAL

42

Stack

HeapYhc instructions

main():
 PUSH_INT 42
 MK_AP show
 MK_AP putStrLn
 RETURN_EVAL

42

show

Stack

HeapYhc instructions

main():
 PUSH_INT 42
 MK_AP show
 MK_AP putStrLn
 RETURN_EVAL

42

show

putStrLn

Stack

HeapYhc instructions

main():
 PUSH_INT 42
 MK_AP show
 MK_AP putStrLn
 RETURN_EVAL

42

show

putStrLn

Comparison

● Yhc uses less instructions to do the same thing.
● Because it doesn't have to have explicit

movements between heap and stack.
● ... and because it can reference other nodes

implicitly rather than using explicit heap offsets.
● Yhc instructions are also smaller
● Because it has more 'specializations'
● ... and again, because heap references are implicit
● These two factors make Yhc about 20% faster

than nhc

Improving Portability

Bytecode in nhc
● nhc compiles Haskell functions into a bytecode

for an abstract machine that manipulates graphs:
The G-Machine.

● The bytecode is placed in a C source file, using
an array of bytes. The C source file is then
compiled and linked with the nhc interpreter to
form an executable.

unsigned char[] FN_Prelude_46sum = {
 NEEDHEAP_I32, HEAP_CVAL_I3, HEAP_ARG, 1, HEAP_CVAL_I4,
 HEAP_ARG, 1, HEAP_CVAL_I5, HEAP_OFF_N1, 3, HEAP_CADR_N1, 1,
 PUSH_HEAP, HEAP_CVAL_P1, 6, HEAP_OFF_N1, 8, HEAP_OFF_N1, 5,
 RETURN, ENDCODE
};

Portable?

● The C code is portable, isn't it?

● Yes, but:

● It creates a dependency on a C compiler.

● There are issues with the nuances of various C
compilers.

● The bytecode can't be loaded dynamically.

Improved Portability.

● Yhc also compiles Haskell functions into bytecode
instructions for a G-Machine.

● However, Yhc places the bytecodes in a separate
file which is then loaded by the interpretter at
runtime. Similar to Java's classfile system.

● More portable, but it means Yhc has to do its own
linking.

More Portable Still?

● Can we extend portability to include portability
over a network?

● Then we could take a closure on one machine
and have it run on another machine.

● Not implemented yet, but some interesting ideas.

Computer A Computer B

calc data

Computer A Computer B

calc data

calc data

Computer A Computer B

calc data

calc data

Computer A Computer B

calc data

Computer A Computer B

calc data

Computer A Computer B

calc data

Computer A Computer B

calc data

Need calc

Computer A Computer B

calc data

Need calc

Computer A Computer B

calc data

Need calc

Computer A Computer B

calc data
Need calc

 calc
calc(x):
 PUSH_ARG x
 PUSH_CONST subcalc
 MK_AP iter
 RETURN_EVAL

Computer A Computer B

calc data

 calc
calc(x):
 PUSH_ARG x
 PUSH_CONST subcalc
 MK_AP iter
 RETURN_EVAL

Computer A Computer B

calc data

 calc
calc(x):
 PUSH_ARG x
 PUSH_CONST subcalc
 MK_AP iter
 RETURN_EVAL

Computer A Computer B

calc data

 calc
calc(x):
 PUSH_ARG x
 PUSH_CONST subcalc
 MK_AP iter
 RETURN_EVAL

Computer A Computer B

calc data

 calc
calc(x):
 PUSH_ARG x
 PUSH_CONST subcalc
 MK_AP iter
 RETURN_EVAL

iter

subcalc

Computer A Computer B

IND data

iter

subcalc

Computer A Computer B

IND data

iter

subcalc
Need iter

Computer A Computer B

IND data

iter

subcalc
And so on ...

Computer A Computer B

IND

42IND

Computer A Computer B

IND

42IND

Result

Computer A Computer B

42

Result

Computer A Computer B

42

Result

Computer A Computer B

42

Result

Computer A Computer B

42

Result

calc data

Computer A Computer B

42

Result

IND

Challenges

● Needs concurrency to be useful.
● Complicates Garbage collection.
● Level of granularity versus laziness.
● Possible architecture differences.

Other Things!

● Other people have written various interpretters and
backends for Yhc bytecode: Java, Python, .NET

● ... and various related tools such as interactive
interpretters.

● I'm also using Yhc to do my Hat G-Machine work.

Questions?

