PENN

v

Dependent Haskell

Richard Eisenberg
University of Pennsylvania
eir(@cis.upenn.edu

Saturday, 6 September, 2014
HIW, Goteborg, Sweden

mailto:eir@cis.upenn.edu
mailto:eir@cis.upenn.edu

Demo

Disclaimer

This is preliminary.

| want your input.

Spoiler Alert!

» All your old Haskell programs will still work.*
* Including non-terminating ones.

 Type inference will, hopefully, remain
predictable.

* let really should not be generalized. Even over kinds.

Outline, in brief

. Surface language design of
Dependent Haskell

[|.Current status

Quantifiers, Today

Quantifier;

Quantifiers, Tomorrow

Quantifier| Dep? Visible? |Required?|Relevant?
forall. Yes | unification FVs No
forall->| Yes =S =S No
pi. Yes unification Yes Yes
pi-> Yes =S =S =S
-2 No Yes Yes Yes
=> No solving Yes Yes

[

Pi-bound identifiers live in both terms and types:

replicate ::
forall a. pi (n :: Nat) -> a -> Vec a n
replicate Zero = Nil

replicate (Succ n’) x
= X ::: replicate n’ Xx

Type = Kind

All types can be used as kinds
type synonyms
type families

GADTs

Type = Kind

data T k a (b :: k) = MKT (a b)
-- T 12 pi (k ::U) -> (k ->U) ->k ->U

Core Lan guage '

See
Weirich, Hsu, Eisenberg

System FC With Explicit Kind Equality
ICFP ’13

Parsing

Below is my best guess. Advice welcome.
» Combine type, kind, and term parsers.
» “injects termin atype; ~ injects type in a term.

* If a name is missing from the default namespace,
try the other one.

Parsing *

Foo * Int
s it Foo applied to Isit (*) applied to
the kind * and Int? Fooand Int?

Proposal:
» Deprecate * in all code

 Disallow * with -XDependentTypes
» Export U (and Constraint)from Data.Kind

» Perhaps start this transition now

Concrete Syntax Questions

» Can we even merge the type and term parsers?

» How to supply a visible argument when an
invisible one is expected?
Proposal: Prefix with @

» How to avoid supplying a visible argument when
one is expected?
Proposal: Use . How does this work with holes?

e Isforall (...) ->justplainsilly?

 What do we think of U?

Other Open Questions

* Promoted type class dictionaries?

 Unsaturated type families? (But see Eisenberg &
Stolarek; HS 2014)

» Optional termination checking? (But see Vazos,
Seidel, & Jhala; ICFP 2014)

» Optional pattern-match totality checking?

 Other sources of partiality? (Non-strictly-positive
datatypes, other recursive datatypes, etc.)

* Promoting infinite terms?

Status Report

Core Language

» Merged type/kind language: Done.
» Eliminated sub-kinding: Done.

» Pi-types: Designed core datatype; still propagating
changes.

data Type = ... | PiTy Binder Ty | ...
data Binder = Binder

{ binder payload .+ BinderVar

, binder dependence :: DependenceFlag
, binder visibility :: VisibilityFlag
, binder_relevance :: RelevanceFlag

data BinderVar = Named Var | Anon Type

Type Inference

» Merged type/kind language: Done.
» Accepting explicit kind variables: Done.

» Designed type inference algorithm, based on
Gundry’s, but to work with OUTSIDEIN: Done?

* Proof of correctness of inference algorithm:
Under way.

» Goal: type inference will be sound and guess-free-
complete, like current algorithm.

» Caveat: No plans for higher-order unification.

Next Steps

» Merge the (type = kind) work into master,
including type inference algorithm.

* Finish implementing II in Core.

 Implement (and prove) type inference for a
surface language with II.

» Parse new language.

 Release.

PENN

v

Dependent Haskell

Richard Eisenberg
University of Pennsylvania
eir(@cis.upenn.edu

Saturday, 6 September, 2014
HIW, Goteborg, Sweden

[

Arguments to be Pi-bound must be
expressible in both terms and types.

Good: replicate (Succ Zero) ‘x’

Bad: let n = case Just Zero of
Nothing -> Zero
Just m -> Succ m
1in
replicate n ‘x’

Parsing: Probable Problems

» forall must become a proper keyword, making
it not a possible variable name.

* “means “term” in a type, but it means
“Template Haskell quote” in a term.

» ! is a strictness annotation in types and patterns,
but an operator in terms.

* Non-problems: -> => '\

