
Optimising Embedded DSLs using Template

Haskell

Sean Seefried, Manuel Chakravarty, and Gabriele Keller

PLC Research Group
The University of New South Wales, Sydney

{sseefried, chak, keller}@cse.unsw.edu.au
National ICT Australia??, ERTOS.

Abstract. Embedded domain specific languages (EDSLs) provide a spe-
cialised language for a particular application area while harnessing the
infrastructure of an existing general purpose programming language. The
reduction in implementation costs that results from this approach comes
at a price: the EDSL often compiles to inefficient code since the host
language’s compiler only optimises at the level of host language con-
structs. The paper presents an approach to solving this problem based
on compile-time meta-programming which retains the simplicity of the
embedded approach. We use PanTHeon, our implementation of an ex-
isting EDSL for image synthesis to demonstrate the benefits and draw-
backs of this approach. Furthermore, we suggest potential improvements
to Template Haskell, the meta-programming framework we are using,
which would greatly improve its applicability to this kind of task.

1 Introduction

Domain Specific Languages (DSLs) reduce the cost of producing software by pro-
viding programming constructs tailored for a particular domain. This reduces the
amount of repetitive code that would otherwise be written in a general purpose
language and also means that people that have little programming experience,
but are nevertheless conversant in the domain can use these languages. Yet in
terms of implementation effort, constructing new languages is expensive [14].

Embedded domain specific languages (EDSLs) ([7], [8]) decrease the imple-
mentation burden since they are implemented in an existing, feature-rich, gen-
eral purpose language. This allows the reuse of a substantial portion of the host
language’s programming environment, such as the lexical analyser, parser, type
checker, optimisation phases and code generator of the compiler and the tools
surrounding it such as debuggers and profilers. Some host languages are better
choices than others: in this paper, we argue that a language with support for
compile-time meta-programming is an ideal tool for the implementation of an
EDSL due to their ability to express compiler-like optimisations, thus increasing
the number of domain specific optimisations that can be written.

?? National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.

The standard approach to the construction of EDSLs involves implementing
them as libraries of combinators in a language with support for higher order
functions, a rich type system and good syntactic control mechanisms1. Unfortu-
nately, EDSLs constructed in this manner often produce inefficient code.

The reason behind this is that domain data types are usually represented
as algebraic data types and are interpreted by recursive traversal functions ([3],
[9], [15], [18]). This interpretive overhead is present in the generated code as the
host language compiler has no knowledge of code improvement techniques that
may be applied to domain data types and expressions which use them. What is
absent is the ability to declare compiler-like optimisations that operate on the
syntactic structure of expressions: a capability that is offered by a language with
compile-time meta-programming features.

An alternative is to embed a compiler [5] for the DSL, rather than the DSL
itself, in the host language. This was precisely the approach taken by the im-
plementors of Pan, a language for the synthesis of two-dimensional images and
animations [4]. In this approach the primitives of the DSL are defined as func-
tions over an abstract syntax tree (AST) representation. The ASTs generated
by programs written in the host language are then optimised and fed to a code
generator which produces efficient code in a (not necessarily different) target
language. The effort involved is equivalent to writing a compiler back-end and
although it is considerable, the cost of writing the components of a compiler
front-end (such as a lexical analyser, parser, and type checker) is saved.

Approach Inherit
front-end

Inherit
back-end

Optimise via

Embedded compiler yes no traditional compiler opts.
Staged interpreter no yes MP: delayed expressions
Extensional meta-
programming

yes yes MP: transformation (requires code
inspection)

MP = meta-programming

Fig. 1. A comparison of three approaches to implementing DSLs

The main disadvantage to embedding a compiler is that access to the (often
extensive) general optimisations of the host language compiler are lost. Further-
more, if there is disparity between the host language and the target language,
generated programs may not be able to use features of the host language. Finally,
even though one ostensibly writes programs in the host language it may not be
possible to use language constructs which require a base type of the language.
(For instance, for if-then-else expressions to be valid they typically require an
expression of boolean type.) Unfortunately, the representation of expressions

1 This has the additional benefit of easing their distribution; it is much easier to
distribute and build a module written in a well established language than the sources
for an entire compiler.

as ASTs requires the use of synthetic types, which precludes the use of such
language constructs.

These disadvantages are automatically avoided by the traditional approach
to EDSL implementation (of not embedding a compiler back-end). We assert
that the problem of inefficient code is adequately solved by extending this
approach with the techniques provided by compile-time meta-programming.
Our approach, which we have dubbed extensional meta-programming transforms
user-written code according to its syntactic structure. The key idea is to repre-
sent code as a data structure (preferably an abstract syntax tree), manipulate
this data so that it represents equivalent but faster code, and finally turn this
data back into code.

Extensional meta-programming differs quite markedly from another popu-
lar meta-programming approach: staged interpreters [2]. Staged interpreters use
meta-programming annotations to traverse the representation of the interpreted
program before the essence of the program is executed at run-time and amounts
to a form of domain specific partial evaluation. This approach also inherits the
optimisations of the host language (as they will be applied to the generated code)
but introduces the expense of having to implement the front-end of a compiler.
If this was merely restricted the implementation of a simple lexer and parser this
expense would be acceptable. Unfortunately real languages often require signif-
icant front-end infrastructure such as a symbol table, a complicated abstract
syntax tree representation and analysis phases.

One advantage of the staged interpreter approach is that the meta-language
does not require the ability to inspect the structure of code. MetaML and MetaO-
Caml both lack this ability. We have summarised the differences between embed-
ded compilers, staged interpreters and extensional meta-programming in Figure
1.

Since our primary motivation is to increase reuse in order to reduce the effort
required to create new languages we have chosen extensional meta-programming.
To demonstrate the feasibility of our approach, we use Template Haskell[16], a
compile-time meta-programming extension to the Glasgow Haskell Compiler [1]
to provide an alternative implementation of Pan [4], which we have dubbed
PanTHeon. Pan was implemented as an embedded compiler in Haskell, its tar-
get language being C. As alluded to earlier, the disparity between these two
languages means that the generated programs cannot use features of the host
language: in this case laziness and higher-order functions.

To summarise, the main contributions of this paper are:

1. We introduce an approach, extensional meta-programming, to implementing
EDSLs offering the following benefits over an embedded compiler:

– Reduced implementation effort through the sharing of host language’s
programming environment and the extension of its suite of optimisations.

– Retention of host language features.
– Inheritance of host language constructs.

2. We investigate the feasibility of extensional meta-programming using Pan-
THeon as an example.

3. Template Haskell is evaluated on an example of significant size, and sug-
gested extensions to Template Haskell that will make a wider range of EDSL
implementation tasks easier.

The rest of the paper is organised as follows. First, we provide an introduction
to meta-programming through Template Haskell. We then give a brief overview
of PanTHeon. This comprises a brief introduction to the Pan language and then
a description of the transformations we apply to it. Each description is divided
into a language independent description (lest readers come to the conclusion the
solution is specific to Template Haskell) and one that focuses on the implemen-
tation details. Next we present benchmarks that provide evidence of the efficacy
of our optimisations followed by an analysis of recurrent problems we have had
with Template Haskell and any solutions we devised.

2 An introduction to compile-time meta-programming

via Template Haskell

This section shows how a useful algebraic transformation can be implemented in
Template Haskell. Since the optimisations of PanTHeon are treated more than
adequately in the rest of the paper we focus on a useful transformation in a
well-known domain: linear algebra.

A basic result of linear algebra is that an n× n matrix, M , multiplied by its
inverse, M

−1, is equal to the identity matrix, I . This is just the sort of property
that we cannot expect most compilers to optimise away, due to the domain-
specific knowledge that is required to perform such an optimisation. Consider
an expression m * inverse m where m and n are matrices. (The precise details
of how matrices are implemented is immaterial.) In order that this expression
may be simplified it must first be converted from code into a data structure via
a process known as reification [6].

Once we have verified that this data structure matches the pattern m *

inverse m we can replace it with the data structure that represents identity.
We then need to convert the data structure back into code, via a process known as
reflection [17]. This is also known, particularly in Template Haskell, as splicing.

In most meta-programming languages, the reification of m * inverse m * n

will take the form of an abstract syntax tree. The transformation of this expres-
sion is then simple. We create a new data structure which represents identity
* n and splice it. We now show how this is achieved using Template Haskell
on a (rather contrived) lambda expression with body equal to m * inverse m

* n.

exp_mat = [| \m n -> m * inverse m * n |]

exp mat makes use of the quasi-quote notation of Template Haskell, denoted
by the [| and |] brackets. These brackets reify code within.

Figure 2 presents the function rmMatByInverse which removes the redundancy
in the reified expression. Unfortunately, without familiarity with the data struc-
ture used for representing expressions the code can be difficult to understand.

The first case does the real work; it matches against infix expressions of the
form m ∗ inverse m and returns identity, while the second and third (after
matching against expressions of the form λp.e and fa respectively) recursively
call upon sub-expressions. (Note that we have only presented the cases necessary
to transform exp mat.)

rmMatByInverse (InfixE (Just ’m) ’GHC.Num.* (Just (AppE ’inverse ’m))) =

VarE (mkName "identity")

rmMatByInverse (LamE pats exp) = LamE pats (rmMatByInverse exp)

rmMatByInverse (AppE exp exp’) =

AppE (rmMatByInverse exp) (rmMatByInverse exp’)

rmMatByInverse exp = exp

Fig. 2. An example of an arithmetic transformation.

Template Haskell’s splicing operator, $(. . .), runs meta-programs and con-
verts the resulting data structure back to code. In our case the expression
$(rmMatByInverse exp mat) evaluates to the code \m n -> n at compile-time. This
is a key aspect of our approach; by using a language which is restricted to
compile-time meta-computation we guarantee that there is no run-time over-
head in the code generated.

3 PanTHeon

PanTHeon is a direct implementation of the image primitives presented in El-
liott’s paper [4]. There are three main classes of optimisation: the unboxing of
arithmetic expressions, aggressive inlining and algebraic transformations. In the
subsections below we describe why each is particularly applicable to our do-
main, and its realisation in general meta-programming terms, without recourse
to Template Haskell specifics. Any language of similar functionality could be
used in its place (although we know of no such language yet.) However, Tem-
plate Haskell is a relatively new extension to Haskell. It is common wisdom that
languages change rapidly and substantially early in their lives. This is at least
partly motivated by their use in novel situations where it is discovered that
additional features would simplify things. As such, we follow the general de-
scription of each optimisation with the solution we devised in Template Haskell,
highlighting problems we encountered.

But first, to put all this in context, we describe Pan in more detail.

3.1 A Pan example

Pan is a domain specific language founded upon the concept of modelling an
image as a function from continuous Cartesian coordinates to colour values. The

animation extends the image concept; it is simply a function from continuous
time to an image.

Figure 3 presents a simple Pan effect that will be used as a running example
throughout the rest of the paper and is self contained with respect to Appendix
A.

checker (x,y) = if even e then blackH else whiteH

where e = floor x + floor y

stripes (x,y) =

| even (floor x) = blue

| otherwise = red

checker_on_stripes = checker ‘over‘ (empty ‘over‘ swirl stripes)

Fig. 3. Checker board imposed over swirled vertical blue and red stripes

Colours are represented as four-tuples containing red, green, blue and al-
pha (transparency) components in the range [0, 1]. whiteH and blackH are 50%
transparent. The checker board (checker) is defined as a function which takes
a coordinate (x, y) and returns blackH if bxc + byc is even and whiteH otherwise.
The stripes function is even easier to define. Here we simply check that that
bxc is even and colour it blue if so, red if not.

In checker on stripes we see the use of the image overlay combinator, over.
This function combines two images pointwise. Depending on the transparency
of the top image a portion of the underlying image will show through. swirl is
an interesting Pan primitive that warps an image by rotating points a distance
proportional to their distance from the origin. The empty image is completely
transparent. See Appendix A for their implementation.

3.2 Architecture of PanTHeon

PanTHeon consists of three main parts - the language implementation, the op-
timisation modules and a client for displaying effects. As mentioned above, the
language implementation is a direct implementation of the combinators in [4].
Users write effects in Pan (which is really just Haskell) which can then be loaded

directly into the client via conventional file menu widgets. The user written code
is imported into an automatically generated module which transforms their code
via functions present in the optimisations modules. This file is then compiled in
GHC and dynamically loaded using Don Stewart’s hs-plugins library[13].

3.3 Unboxing Arithmetic

Motivation and abstract approach PanTHeon is a numerically intensive
application, almost exclusively using floating-point arithmetic. Hence unboxing
can yield significant improvements in speed2. Unboxed code also yields better
memory locality as the arguments and results do not require an indirection to a
heap allocated object. In fact, it may be possible that the arguments are placed
directly into registers.

Most compilers optimise away as much unnecessary boxing as is feasible, but
as implementors of an EDSL we have more knowledge than the compiler does
and can consequently do better. We can be certain of the validity of unboxing
assuming that every function in PanTHeon is also monomorphic. Although it is
quite possible to define functions this way (and we have done so) a much nicer
solution would be to specialise each invocation of a polymorphic function based
on the type information gleaned from the context in which it is invoked. We
discuss this further in the next subsection.

This begs the question, why do we not simply define all the functions in
terms of unboxed arithmetic in the first place? Apart from the fact that the
syntax of unboxed arithmetic is ugly and cumbersome to use, there is a more
important issue: abstraction. When a colour is displayed, each of its component
values is converted to an integral value between 0 and 255 and combined into a
single 32-bit integer that is placed into video memory. Efficiency can be gained
by converting the functions that operate on colours to their integer arithmetic
equivalents behind the scenes, while the user retains their view of the current
abstraction (i.e. floats of [0,1])3.

In general terms this optimisation requires that we traverse the representation
of each top level function replacing all boxed arithmetic operators and constants
with their unboxed equivalents. The unboxing of arithmetic is an interesting
transformation as it changes the semantics of the program. Each type in the
resulting program corresponds exactly to a type in the original, but it is clear
that the validity of this correspondence relies upon our knowledge of the domain.

Implementation in Template Haskell The process of replacing all boxed
operators and constants with their unboxed equivalents is generally a straightfor-
ward process in Template Haskell, although we run into difficulty in the context

2 Without unboxing, each arithmetic function must first unbox its arguments, perform
a primitive arithmetic operation upon these values, and re-box the result.

3 Although early experiments indicated that this arithmetic conversion measurably
improved performance, there were technical reasons that prevented it. We discuss
the reasons in the implementation details.

of polymorphic data structures. Most cases written for the family of unbox-
ing functions merely call unbox recursively on sub-objects (be they declarations,
types, bodies, expressions, etc). There are only a few interesting cases:

1. Transforming type signatures. It is clear that any type signatures or type
annotations that existed in the original declarations will no longer be valid.
For each type synonym and data type declared for the boxed declarations we
declare an unboxed version. For ease of recognition the name of such types
have a UB suffix appended.

2. Replacing arithmetic operators with unboxed equivalents. This code assumes
that all operators will be changed to their unboxed floating point equivalents.
We recognise this as a flawed assumption and we discuss this further in this
paper.

3. Replacing tuples with stricter versions. We declared two new data types
to express points and colours to increase strictness. Unlike the situation
with tuples, one can add strictness annotations to the arguments of the
constructor.

We now present an example of all three of these cases in action.

checker :: ImageC

checker (x,y) = if even e then blackH else whiteH

where e = floor x + floor y

becomes

checker :: ImageC_UB

checker (Point_UB x y) = if evenInt# e then blackH else whiteH

where e = float2Int# x + float2Int# y

Our main problem with the implementation of the unboxing pass has been
the lack of easily accessible typing information. It is problematic in three ways.

– It is impossible to know what the type of a literal is. This was first identified
by Lynagh [12]. Fortunately, nearly all literals in the definition of Pan func-
tions are instances of Fractional. However there were a few instances where
this was not true and special cases had to be written for them.

– In the previous section we stated that we had also considered converting
the components of colours to the range [0, 255]. This would have necessi-
tated a relatively complex transformation on all functions which manipulated
colours.
For instance consider the definition of cOver (a key component of the defini-
tion of image overlay.)

cOver (r1,g1,b1,a1) (r2,g2,b2,a2) =

(h r1 r2, h g1 g2, h b1 b2, h a1 a2)

where h x1 x2 = a1* x1 + (1 - a1) * x2

Under our proposed transformation it would become

cOver (Colour_UB r1 g1 b1 a1) (Colour_UB r2 g2 b2 a2) =

(Colour_UB (h r1 r2) (h g1 g2) (h b1 b2) (h a1 a2))

where h x1 x2 = (a1 *# x1 +# (255# -# a1) *# x2) ‘divInt#‘ 255#

Such a transformation is only feasible when one has knowledge of the type
of each variable. For instance, in the example above it is necessary to know
that a1 is of type ColourBit UB (i.e. in range [0, 255]).

– We have had to define all PanTHeon functions that contain arithmetic oper-
ations monomorphically. A restriction that GHC imposes is that a function
containing unboxed operations cannot operate on polymorphic data types.
With type information we could specialise such polymorphic functions at
each call site.

Without the ability to reify the type of a fragment of an expression, some
transformations simply cannot be written for the general case, and until a sat-
isfactory solution has been found, we regard this as one of the principle short-
comings of our implementation. We discuss this issue further in Section 5.2.

3.4 Inlining

Motivation and abstract approach The style of embedding used in the
original implementation of Pan has the effect of inlining all definitions and β-
reducing the resulting function applications before any further simplification
occurrs. This greatly increases the opportunities for algebraic transformation
but has the drawback of introducing the possibility of code replication. Fortu-
nately, the effect of code replication can be mitigated by applying a common
subexpression elimination (CSE) pass following this one. Based on the success
Elliott, Finne, and de Moore [5] had with it we investigated this approach to
code improvement.

However, since GHC has its own passes for performing beta-reduction and
CSE, we decided to leave these passes unimplemented and see how well the com-
piler performed. The results of our experiment are encouraging and we provide
a concrete example in next section.

In general terms the ability to inline code relies upon two meta-programming
facilities: the ability to reify, transform and splice code, and the ability to look
up the definition of a top-level function declaration. Unfortunately, Template
Haskell does not (yet) support this second facility. In Section 5.1 we explain our
solution to this problem which involves the manual creation of a look-up table.

With this infrastructure in place, the inlining process is relatively straight-
forward. We take as input the final animation or image function that PanTHeon
will display and traverse its definition. Each time we encounter the use of a
function that has been defined in PanTHeon4 we look up its definition, create
an equivalent lambda expression and substitute it at that location. We do this
recursively.

4 We do not inline functions that are part of other Haskell libraries.

Clearly, this leads to non-termination in the context of recursion. While we
could refuse to inline recursive function definitions, determining whether a func-
tion is recursive is an involved process requiring the construction of a call graph
and the determination of strongly connected components, and in any case GHC
already does this. Unfortunately we do not have access to this information. (Per-
haps Template Haskell should provide it.) Instead we have chosen to limit the
inlining process to a fixed depth which roughly corresponds to loop unrolling.

Implementation in Template Haskell Most definitions in the inlining trans-
formation are concerned with traversing the components of a declaration. The
function that actually does the real work is mkInlineExp. Its implementation is
quite cluttered with Template Haskell specifics so we have chosen to present a
stepwise example of its effect on our running example (introduced in Section
3.1).

The inlining pass traverses the declaration of checker on stripes until it
comes to the variable sub-expression checker. At this point a look-up is per-
formed upon its name and the declaration for checker is retrieved. We then
convert this definition to an equivalent lambda expression. Note that where dec-
larations are converted to let declarations. Note that without typing information
we cannot inline functions that have been overloaded using Haskell’s type class
mechanism.

\(x,y) -> let e = floor x + floor y

in if even e then blackH else whiteH

This expression is then substituted in place of the variable. Function defini-
tions that contain guards are also handled. This occurs during the inlining of
stripes. It is replaced with

\(x,y) -> if even (floor x) then red else blue

In the previous section we promised a concrete example of the effect of GHC’s
common subexpression elimination on inlined code. A fitting example to consider
comes from the original paper on the implementation of Pan [5]):

swirlP r = \p -> rotate (distO p * (2*pi/r)) p

The result of inlining clearly contains much redundancy:

(\(x,y) -> (x * cos (sqrt (x*x + y*y) * (2*pi/r))

- y * sin (sqrt (x*x + y*y) * (2*pi/r)),

y * cos (sqrt (x*x + y*y) * (2*pi/r))

+ x * sin (sqrt (x*x + y*y) * (2*pi/r)))

The following dump of the Core5 code produced shows that it is capable of
removing much of the redundancy.

5 An intermediate representation used by GHC. Adding the flag -ddump-core to the
command line will dump the code to standard output.

\w_se6i ww_se6l ww_se6m ->

let { a’334 = <core equivalent of x*x + y*y * (2*pi/r)>

} in

(# (GHC.Prim.minusFloat#

(GHC.Prim.timesFloat# ww_se6l (GHC.Prim.cosFloat# a’334))

(GHC.Prim.timesFloat# ww_se6m (GHC.Prim.sinFloat# a’334))),

(GHC.Prim.plusFloat#

(GHC.Prim.timesFloat# ww_se6m (GHC.Prim.cosFloat# a’334))

(GHC.Prim.timesFloat# ww_se6l (GHC.Prim.sinFloat# a’334)))

#)

GHC also performs β-reduction and constant folding (e.g. 2π is replaced with
the constant 6.283 . . .) which saves us yet more implementation effort.

3.5 Algebraic Transformation

Motivation and abstract approach The principle behind algebraic transfor-
mation as an optimisation technique is simple: expressions are substituted for
semantically equivalent expressions which compile to faster code, be it univer-
sally or only on average. If we consider our running example again, we can see
that overlaying the entirely transparent empty image on top of swirl stripes

will have no effect. (This is proved by examining the definition of over.)

checker_on_stripes = checker ‘over‘ (empty ‘over‘ swirl stripes)

The sub-expression may simply be replaced with swirl stripes. That is,
the following algebraic identity holds: empty ‘over‘ image = image. (For more
examples of algebraic properties of Pan see Appendix B.)

What is exciting about our use of this technique in PanTHeon (and in the
general context of EDSLs) is that we are using it in a fairly novel context:
outside the compiler. A key advantage over an embedded compiler is that we
only need to implement transformations specific to our EDSL, extending rather
than overriding the optimisations of the compiler.

In general terms algebraic transformations are easy to implement. For a given
expression we attempt to match it against our known algebraic identities. When
successful we replace it with the equivalent optimised expression. To ensure that
sub-expressions are also optimised we recursively apply to the sub-expressions
left unchanged by the original transformation. We also do this when no algebraic
transformation is applicable.

Implementation in Template Haskell Template Haskell’s reification of code
as algebraic data types in combination with its pattern matching features make
algebraic transformations very easy to write (and has been noted by others [2]).
Earlier we showed that the expression empty ‘over‘ image can be replaced with
image. This particular case is implemented via the following code.

algTrans (AppE (AppE (VarE ’over) (VarE ’empty)) image) =

algTrans image

One of the side effects of the rich syntaxes offered by modern programming
languages, including Haskell, is that there is often more than one way to write
essentially the same expression. This is very useful for program generation but in
the context of program transformation means that separate cases must be written
to transform equivalent expressions. In order to reduce the number of patterns
to be matched against, a number of cases were written that put expressions in
a canonical form. For instance, the example above matches on the canonical
(prefix) form, over empty image, of the algebraic identity presented earlier.

Another tedious aspect of all transformations is the recursive cases. Since
we wish our transformations to be applicable not just to expressions but sub-
expressions also, we must have cases which recursively call on them. These cases
are numerous and easily outnumber the cases that actually do interesting work.
However, a recent paper [11] presents a method by which the such boiler-plate
code can be “scrapped”; that is the traversal can be done in a handful of lines
of code. We have used these techniques in our source code.

An example of the code reductions are shown below. The function inlineExp

checks whether an expression is a variable and inlines the appropriate function
if so and returns the expression unchanged if not.

The function inline is defined using the everywhereM combinator. It can be
used on any code representation data structure and will transform any compo-
nent of such data strucutre that contains an expression, no matter how deeply
nested. For lack of space we have omitted the function mkInlinedExp which cre-
ates an lambda expression equivalent to the looked up function definition.

inlineExp :: [(String, FunDecl)]

-> ([(String, FunDecl)] -> (forall a. Data a => a -> Q a))

-> Exp -> Q Exp

inlineExp tbl inline e@(VarE nm) =

case lookup (nameBase nm) tbl of

(Just (funDec, _)) -> mkInlinedExp (inline tbl) funDec

Nothing -> return e

inlineExp _ _ exp = return exp

inline :: [(String, FunDecl)] -> (forall a. Data a => a -> Q a)

inline tbl = everywhereM (mkM (inlineExp tbl inline))

4 Benchmarks

Performance testing on PanTHeon has been conducted in two ways - opti-
mised effects have been compared with their unoptimised counterparts as well
as against the original Pan implementation.

4.1 PanTHeon vs. itself

Figure 4 compares the frame rate of an effect for which different combinations
of optimisations have been applied. When both unboxing and inlining are ap-

plied the effects run at least twice as fast, and for one particular example the
optimisations led to a nine-fold speed-up.

The effects were run on a 1Ghz Apple Powerbook G4 with 512MB of RAM.
We have left out the effect of algebraic transformations only because our sample
size is so small. Naturally, we could contrive an effect with much computational
redundancy which would show off its effectiveness, but this would not tell us
much. Only by collecting a large number of effects can we say anything about
its effectiveness.

Effect Base Inlined Unboxed Unboxed & Inlined

checker swirl 8.86 f/s 1.309x 2.190x 2.258x
circle 11.241 f/s 1.324x 2.126x 2.083x
checker on stripes 1.302 f/s 1.027x 8.361x 9.003x
four squares 2.512 f/s 1.366x 4.184x 4.152x
triball 1.244 f/s 1.914x 2.578x 2.707x
tunnel view 4.62 f/s 1.223x 2.042x 2.661x

Fig. 4. Effect of optimisations on frame rate for effects displayed at 320x200 resolution.

4.2 PanTHeon vs. Pan

How well does the performance of PanTHeon compares with that of Pan? Un-
fortunately, this is difficult to compare because of platform disparity. PanTHeon
has been implemented for *nix6 platforms while Pan only runs on Microsoft
Windows. Nevertheless, we performed measurements on PanTHeon and Pan on
the same machine: a 733 MHz Pentium III, 384 MB RAM, at 400x300 resolution.

Pan still outperforms PanTHeon. The checker swirl effect has performance
that compares favourably; at a resolution of 400x300 it runs at 4.78 frames/s

in PanTHeon and at 10.61 frames/s in Pan. Other effects such as triball and
four squares perform far better in Pan (> 18 frames/s) and very slowly in Pan-
THeon (1.68 frames/s and 6.54 frames/s respectively). Both these effects makes
substantial use of the over primitive for layering images on top of each other.
Pan seems to do substantial unrolling of expressions, which is an optimisation
we have not yet implemented in PanTHeon. We suspect that it will significantly
improve effects’ performance.

However, we have shown that the issue does not lie with any inherent de-
ficiencies in the quality of the code that GHC produces. We hand-coded (and
optimised) a very simple effect which ran at a speed comparable to the same
effect in Pan (24 million pixels/s).

Another aspect of the Template Haskell implementation that has hindered
further tuning or creation of optimisations is the lack of support for profiling of
programs which contain splicing.

6 It has been successfully built on Debian GNU/Linux and Mac OS X.

4.3 Relative code base sizes

Finally, we compare the amount of code needed to implement Pan and Pan-
THeon as a crude means of comparing implementation effort. Both Pan and
PanTHeon have two components – a language definition and a display client.
The PanTHeon library, plus optimisations totals at about 3000 lines of code.
The client is implemented in under 1000 lines of code. Pan, in its entirety, ex-
ceeds 13000 lines of code. The inheritance of a code generator and host language
optimisations by PanTHeon is the primary reason for this difference.

5 Template Haskell specifics

We found Template Haskell to be an excellent language for extensional meta-
programming. It’s quasi-quote notation, its novel approach to typing and its
ability to represent and inspect code made the task of writing elegant compiler-
like optimisations possible. However, we believe that there are ways in which
the language could be improved further and in this section we review difficulties
we had with the current Template Haskell implementation and any solutions
we devised. We envisage that this section will be of most use to other users of
Template Haskell and may be skipped safely by those who are not interested.

5.1 Reification of top-level functions

Both unboxing of arithmetic and inlining, require the ability to reify top-level
function declarations. Currently, such reification is unsupported in Template
Haskell. There is, however, a relatively simple work-around to this problem. We
can create a look up table in two steps. First, we place the entire module in
declaration reification brackets and call the resulting data structure something
appropriate, such as moduleImageFuns. We can then create the look-up table for
this module by applying a function which creates a list of pairs matching names
to function declarations.

An interesting dilemma arises when one wishes to write a module, say M2TH,
which refers to functions defined in module M1TH7. But the functions in M1TH are
not in scope and will only become so if they are spliced in somewhere. So we
create a module M1 which splices in the reified functions from this module and
then import M1, not M1TH, inside module M2TH. The basic idea is summarised in
Figure 5.

There is just one more tiny problem. We wish to transform both the functions
in M1TH and M2TH before bringing them into scope for display in the PanTHeon
client, but the solution outlined above causes the functions in M2TH to refer to
the functions in scope in M1. The reified form of such functions contain original

names which are of the form M:f (where M and f are module and function names
respectively). In order to refer to whatever is in scope at post-transformation
splice time we must remove the module prefix from the original names.

7 By convention we append TH to the end of modules constructed in the above manner

M1M1TH

M2TH

Fig. 5. M2TH imports M1 which splices in declarations in M1TH.

The addition to Template Haskell of a native means to deal with the reifica-
tion of top-level function declarations would greatly simplify the implementation
of PanTHeon and similar programs, and would be less error prone.

5.2 Lack of type information

In Section 3.3 we mentioned that lack of type information prevented us from
satisfactorily implementing the unboxing transformation. This is for three main
reasons:

1. We require the type of literals in order to choose the correct primitive un-
boxed arithmetic functions.

2. Knowing the type that an invocation of a polymorphic function would be
instantiated to is also necessary to choose the correct primitive unboxed
arithmetic functions.

3. Polymorphic data structures cannot contain unboxed values. Therefore, spe-
cialised data structures are required. Again, types are needed. The next
subsection discusses this further.

Template Haskell recently underwent a substantial revision. One of the fea-
tures that was added was the ability to reify variable names to glean, among other
things, their types. Unfortunately, this is only possible if the variable name in
question was brought into scope for the one of the following reasons: it came
from another module, it was not generated by a splice and appears somewhere
in the current module, or it was generated by a top-level splice occurring earlier
in the current module.

In fact, this is the only type information that can be available without splicing
the declaration in which the variable appears, for in general it is undecidable as
to whether an arbitrary meta-program, once run, will produce correctly typed
code. (This was the motivation behind the design of Template Haskell’s typing
system which defers type checking until meta-programs have been run.)

However, in the special case that the reified code was closed, in the sense that
it contained no further splices and all variable names were in scope, it would be

possible, in principle, to type the code. Fortunately, this is precisely the sort of
declaration in PanTHeon that we wish to glean type information from.

5.3 Unboxing in the context of polymorphic data structures

Section 3.3 hinted at a problem with unboxed values in the context of polymor-
phic data structures. One of the restrictions on unboxed values is that they may
not be stored in polymorphic data structures. This necessitates the specialisation
of polymorphic data structures to monomorphic counterparts. Disregarding the
difficulty of doing this in the absence of typing information there is an additional
difficulty. While it is possible to reify data type declarations in other modules
(using the Template Haskell primitive reifyDecl) it is not possible to reify the
definitions of functions in those modules. The following example illustrates some
of the difficulty arising from this.

weird :: Point

weird = head (zipWith (,) [1] [0.5])

Without the ability to reify the definitions of zipWith and head, and specialise
them to work on a monomorphic version of the list data type the only other
solution is to marshal data to and from unboxed/monomorphic representations
at key points within the function definition, which to be feasible also requires
access to type information. At present, it is not clear whether the ability to reify
entire modules or functions in other modules will be added to Template Haskell
or not. The latter solution will be necessary in case it does not.

5.4 The question of rewrite rules

In our implementation we have chosen not to use rewrite rules to perform alge-
braic transformation of programs, even though it would, in principle, be possi-
ble. Template Haskell provides full control over the timing of the application of
transformations unlike GHC’s rewrite rules [10]. Experience suggests that it is
notoriously difficult to ensure that rewrite rules will be applied when one intends
them to be. Because of their complex interaction with the other optimisations
of GHC it can often be the case that they are not nearly as applicable as one
would like. Also, since we cannot apply the unboxing transformation to rewrite
rules we would have to do this by hand.

6 Future Work

We have identified a number of ways in which PanTHeon could be further im-
proved. However, the latter two suggestions are not limited to this particular
EDSL; they benefit the extensional meta-programming approach we have taken.

Conversion of domain data types We are still interested in converting the
components that make up the colour data type to integers in the range [0, 255]

and converting all functions which manipulate colour to operate upon this range.
As we noted before, this is not feasible without being able to ascertain the type
of individual components of a functional declaration. We believe that this type
information would allow more radical conversion. A key function in PanTHeon is
toRGB32 which takes a colour, converts each component to be in the range [0, 255]

(which fits in 8 bits) and then packs the four components into a 32-bit integer
using bitwise operations. It would be interesting to see if the colours could be
represented by this 32-bit representation at all times. This would require colour
manipulating functions to use bitwise operations on the colours instead of the
native pattern matching facilities of the Haskell language.

Moving optimisation phases of the host language compiler into li-

braries There is a subtle problem with the interaction between GHC’s opti-
misations and those presented in this paper: our optimisations are performed
before any of GHC’s. Unfortunately the order in which optimisations are done
is often important; some increase the effectiveness of others if performed at the
correct time. While we have not (yet) encountered this problem with PanTHeon,
we feel this problem would benefit from closer scrutiny.

The solution to this problem is tantalising. One proposal is that all optimi-
sations are written in Template Haskell. This would have the effect of shifting
a large portion of the compiler into its support libraries and would arguably
simplify the implementation considerably.

However this raises new problems. Many of the optimisations in GHC depend
upon information gleaned from the structure of the input program; examples in-
clude strictness analysis, various forms of data flow analysis, and call graphs.
Further, these optimisations are applied to the Core language, a simplified in-
termediate representation of Haskell programs, that is nonetheless not Haskell.
(Since it is syntactically simpler and has less complicated semantics, writing
optimisations in Core is easier.) The idea of adding meta-programming facili-
ties to Core has been put forward but it is far from clear how this would be
implemented. Nonetheless, the potential benefits almost certainly outweigh the
difficulty of this proposal.

Access to type information before execution of meta-programs We are
interested in implementing a modest extension to the type checker of Template
Haskell that allows closed reified code to be typed. It would also be interesting
to see whether declarations that are not closed could at least be partially typed.

7 Related Work and Conclusion

Many languages have been developed using the embedded approach to domain
specific language construction. Examples include an XML translation language

[18] , Fran [3], FranTk [15], and Haskore [9]. These languages are written in an
interpretive style in which domain types are modelled as algebraic data types
and language primitives as functions which recursively traverse over them. This
leads to inefficient code and was the original motivation behind the embedded
compiler approach of Pan.

But we feel the embedded compiler approach sacrifices too much. Apart from
having to write the entire back-end of a compiler, one also introduces a disparity
in the semantics of the host language and the target language which can lead to
such problems as the loss of host language features, and the burden of having
to duplicate the effect of some constructs, such as if-then-else expressions, due to
the synthetic nature of the types used in the embedded compiler.

Much of the inefficiency of EDSLs results from the host compiler not being
able to see at the level of the new language. Compilers often have intimate
knowledge of semantics of their primitive constructs, and such knowledge allows
them to perform sophisticated optimisations to improve the performance of code.
But they cannot understand an EDSL in such a manner.

Meta-programming solves this problem by allowing the programmer to use
their knowledge of the EDSL to write domain specific optimisations. In this
paper we have demonstrated that:

– Optimisations are easy to write. This is facilitated by the quasi-quote nota-
tion and pattern matching facilities of Template Haskell. Incidentally, this
affirms the half-serious remark that Haskell is a domain specific language for
writing compilers.

– Extensional optimisations work well with those inherited from the host lan-
guage.

– The optimisations are effective. There was at least a factor of two speed up
in all the examples we tested on.

– The implementation effort, in terms of raw lines of code, is significantly less.

– Additional meta-programming facilities would increase the power of exten-
sional meta-programming. In particular, more type information is the key to
writing more sophisticated transformations.

The source code of PanTHeon, along with instructions for building it, can
be found at http://www.cse.unsw.edu.au/~sseefried/pantheon.html.

The comments and suggestions of a number of people helped improve the
presentation of this paper. In chronological order of contribution, the authors
would very much like to thank Ian Lynagh, Simon Peyton Jones, John O’Donnell,
Anthony Sloane, Donald Stewart, Nicolas Magaud and André Pang.

A Listing of module Image

Below is a listing of just the parts of module Image needed to understand the
examples presented in this paper.

module Image

where

type Point = (Float, Float)

type Colour = (Float, Float, Float, Float)

type Image c = Point -> c

type ImageC = Image Colour

type Warp = Point -> Point

whiteT :: Colour

whiteT = (0,0,0,0)

whiteH, blackH :: Colour

whiteH = (1,1,1,0.5)

blackH = (0,0,0,0.5)

lift0 h = \p -> h

lift1 h f1 = \p -> h (f1 p)

lift2 h f1 f2 = \p -> h (f1 p) (f2 p)

empty :: ImageC

empty = lift0 whiteT

distO :: Point -> Float

distO (x,y) = sqrt (x*x + y*y)

swirl :: Float -> Warp

swirl r p = rotateP ((distO p) * (2*pi/r)) p

cOver :: Colour -> Colour -> Colour

cOver (r1,g1,b1,a1) (r2,g2,b2,a2) = (h r1 r2, h g1 g2, h b1 b2, h a1 a2)

where h x1 x2 = a1* x1 + (1 - a1) * x2

over :: ImageC -> ImageC -> ImageC

over = lift2 cOver

B Some algebraic properties of Pan

empty ‘over‘ image = image

image ‘over‘ image = image

translate (x1,y1) (translate (x2,y2) im) = translate (x1+x2, y1+y2) im

rotate a im = rotate (a - n*2*pi) im (where n = a ‘div‘ 2*pi)

rotate a1 (rotate a2 im) = rotate (a1 + a2) im

scale (x1,y1) (scale (x2,y2) im) = scale (x1*x2, y1*y2) im

fromPolar (toPolar f) = f

References

1. The Glasgow Haskell Compiler. http://haskell.org/ghc.
2. Krzysztof Czarnecki, John O’Donnell, Jörg Striegnitz, and Walid Taha.

DSL Implementation in MetaOCaml, Template Haskell, and C++. URL:
http://www.cs.rice.edu/˜taha/publications.html, 2003.

3. Conal Elliott. Functional implementations of continuous modeled animation. Lec-
ture Notes in Computer Science, 1490:284–, 1998.

4. Conal Elliott. Functional Image Synthesis. In Proceedings Bridges 2001, Mathe-
matical Connections in Art, Music, and Science, 2001.

5. Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(3):455–481, May 2003.

6. Daniel P. Friedman and Mitchell Wand. Reification: Reflection without Meta-
physics. In Proceedings of the 1984 ACM Symposium on LISP and functional
programming, pages 348–355, 1984.

7. Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys (CSUR), 28(4es):196, 1996.

8. Paul Hudak. Modular domain specific languages and tools. In P. Devanbu and
J. Poulin, editors, Proceedings: Fifth International Conference on Software Reuse,
pages 134–142. IEEE Computer Society Press, 1998.

9. Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore music
notation - an algebra of music. Journal of Functional Programming, 6(3):465–483,
1996.

10. Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the Rules:
Rewriting as a practical optimisation technique in GHC. International Conference
on Functional Programming (ICFP 2001). Haskell Workshop., September 2001.

11. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–37, March
2003. Proc. of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

12. Ian Lynagh. Unrolling and simplifying expressions with Template
Haskell. URL: http://web.comlab.ox.ac.uk/oucl/work/ian.lynagh/papers/
Unrolling and Simplifying Expressions with Template Haskell.ps, May 2003.

13. André Pang, Donald Stewart, Sean Seefried, and Manuel Chakravarty. Plugging
Haskell In. To be published in Haskell Workshop 2004, June 2004.

14. Arch D. Robinson. The Impact of Economics on Compiler Optimization. In Pro-
ceedings of the ACM 2001 Java Grande Conference, Standford, pages 1–10, June
2001.

15. Meurig Sage. FranTk — a declarative GUI language for Haskell. ACM SIGPLAN
Notices, 35(9):106–117, 2000.

16. Tim Sheard and Simon Peyton Jones. Template Meta-Programming for Haskell.
ACM SIGPLAN Notices: PLI Workshops, 37(12):60–75, 2002.

17. Brian Cantwell Smith. Reflection and Semantics in Lisp. Conf. Rec. 11th ACM
Symp. on Principles of Programming Languages, pages 23–35, 1984.

18. Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators or
type-based translation? In Proceedings of the Fourth ACM SIGPLAN International
Conference on Functional Programming (ICFP‘99), volume 34–9, pages 148–159,
N.Y., 27–29 1999. ACM Press.

