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Editorial

by Wouter Swierstra 〈wss@cs.nott.ac.uk〉

Haskell is on a roll: #haskell has hit 400 users; Simon Peyton Jones was invited
to speak at OSCON; the first printing of Programming in Haskell has completely
sold out; and we can all look forward to reading about Real World Haskell. Given
the buzz Haskell has been causing in the blogosphere, I was hardly surprised when
I started receiving ‘functional spam,’ which I thought I’d share:

Hello XXX@@cs.nott.ac.uk,

R u sick of wearing teh hare shirt? Do women laff at ur tiny monads
and say your fully-nerd??? Its time to takcle yur awkward squad and
make her VERY happy!

We offer TOP quality lambda shirts delivered to you in full confiden-
tiality. Order now and get theorems for FREE!

www.cafepress.com/TheMonadReader

Approved by teh top doctors in the field!!

I think this can only mean that Haskell is on the verge of a breakthrough.
I may not have received as many submissions for this issue as for the last, but I

am no less pleased with result: Brent Yorgey describes a very tidy implementation
of several combinatorial functions on multisets; Conrad Parker, on the other end of
the spectrum, gives a mind-boggling solution to a classic problem, completely im-
plemented in Haskell’s type system! I think both articles complement one another
quite nicely. I hope you enjoy reading them as much as I did.

www.cafepress.com/TheMonadReader




Generating Multiset Partitions

by Brent Yorgey 〈byorgey@gmail.com〉

Multisets are a generalization of sets that allow elements to occur more than
once. In this article, I present a general algorithmic framework in Haskell for
generating the unique partitions of multisets using time linear in the number
of partitions. The framework is based on the key observation that multisets can
be represented using vectors in Nn. It is general enough that it also lends itself
to efficient computation of a number of related combinatorial functions, including
vector partitions, integer partitions, and power sets.

This article is literate Haskell; the reader is encouraged to load it into their
favorite interpreter and experiment while reading along. Every example shown in
the text was actually computed by the listed code, through the magic of lhs2TeX [1].

Introduction

A few months ago, working on a Project Euler [2] problem (#159, to be precise),
I wanted to write a function to generate all factorizations of a given integer n > 2.
A factorization of n is simply a nonempty list of integers, all greater than 1, whose
product is n. For example, 30 has five distinct factorizations: 30 = 15 × 2 =
10× 3 = 6× 5 = 5× 3× 2. (Note that we include the trivial factorization 30 = 30
and consider factorizations equal up to permutation of the factors, e.g. 15× 2 and
2 × 15 are the same factorization.) How can we compute all factorizations of a
given integer efficiently?

Consider representing integers by multisets of their prime factors. For example,
30 = {2, 3, 5}, and 12 = {2, 2, 3}. We must use multisets of prime factors rather
than sets, since we want to be able to distinguish between, say, 6 = {2, 3} and 12 =
{2, 2, 3}. Given an integer n and its multiset of prime factors, a factorization of n
corresponds to a particular grouping of the prime factors into subsets. For example,
for n = 30, the factorization 10× 3 corresponds to the grouping {{2, 5}, {3}}.
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In general, such a grouping into subsets is known as a partition. Formally, a
partition of a multiset M , or multipartition, is a collection of sub-multisets (usually
just referred to as subsets) Ti ⊆ M for which⊎

Ti = M,

where ] denotes multiset union; for example, {1, 2} ] {1, 3} = {1, 1, 2, 3}.
As an example, we can list all the multipartitions of {2, 2, 3}:

{{{2, 2, 3}}, {{2, 2}, {3}}, {{2}, {2, 3}}, {{2}, {2}, {3}}}.

These correspond to the factorizations 12 = 4 × 3 = 2 × 6 = 2 × 2 × 3, and in
general it’s not hard to see that factorizations of an integer exactly correspond to
partitions of its multiset of prime factors.

So, I set out to write some code for generating multiset partitions. This turned
out to be rather tricky, and it took me a few days to come up with a good solution.
The solution I eventually found, however, ended up being quite general, and serves
as a nice case study in the expressiveness of Haskell. I found I was largely able
to think “through” the language directly about the problem, without having to do
too much translation between my head and the code. (Or perhaps this only means
that I think in Haskell, but that wouldn’t be such a bad thing either.)

Algorithms for generating multiset partitions have been published previously, by,
for example, Knuth [3] (who also notes the correspondence between multisets and
vectors in Nn). However, Knuth’s implementation uses an imperative paradigm.
To my knowledge there have been no published treatments of the multipartition
problem in a functional context, although I would gladly welcome correction on
this point.

A näıve approach: set partitions

Since multisets are a generalization of sets, let’s start by generating set partitions
and see how far it takes us. Given a set S, we can generate its partitions as follows:
first, choose an arbitrary element s ∈ S; then generate the power set (set of all
subsets) of the remaining elements of S; each one of these subsets can be combined
with s and a partition of the remaining elements to form a partition of S. That
is, for each T ⊆ (S \ {s}), recursively find the partitions of S \ ({s} ∪ T ), and add
{s} ∪ T to each to form a partition of S.

For example, let S = {2, 3, 5} and choose s = 2, so the first subset of every
generated partition will contain 2. Next we generate the power set of S \ {2} =
{3, 5}, namely, {{3, 5}, {3}, {5}, ∅}. Each one of these can be combined with s.
Combining the first with s yields our first partition, {{2} ] {3, 5}} = {{2, 3, 5}},
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since there is nothing left to recursively partition. Combining {3} with s yields
a first subset of {2, 3}, and recursively partitioning the remaining {5} yields only
itself, giving us {{2, 3}, {5}}. Combining {5} with s similarly gives us {{2, 5}, {3}}.
Finally, we combine ∅ with s, giving {2} as the first subset; recursively partitioning
the remaining {3, 5} gives both {{3, 5}} and {{3}, {5}}, and prepending {2} gives
us the final two partitions, {{2}, {3, 5}} and {{2}, {3}, {5}}.

Some thought (and/or trying more examples) should convince the reader that
this succeeds in generating each partition of S exactly once.

This algorithm is implemented in Listing 1, using lists as a simple representation
of sets. (Incidentally, most of the code in this article, including that in Listing 1,
was tested with QuickCheck [4]; the QuickCheck properties are not shown but can
readily be found in the source.)

-- pSet s generates the power set of s, pairing each subset

-- with its complement.

-- e.g. pSet [1,2] = [([1,2],[]),([1],[2]),([2],[1]),([],[1,2])].

pSet :: [a] -> [([a],[a])]

pSet [] = [([],[])]

pSet (x:xs) = mapx first ++ mapx second where

mapx which = map (which (x:)) $ pSet xs

first f (x,y) = (f x, y)

second f (x,y) = (x, f y)

-- setPartitions S generates a list of partitions of S.

setPartitions :: [a] -> [[[a]]]

setPartitions [] = [[]]

setPartitions (s:s’) = do (sub,compl) <- pSet s’

let firstSubset = s:sub

map (firstSubset:) $ setPartitions compl

Listing 1: Computing set partitions.

For example, evaluating setPartitions [2,3,5] yields

[[[2,3,5]],[[2,3],[5]],[[2,5],[3]],[[2],[3,5]],[[2],[3],[5]]] ,

just as we computed before. Now, given a suitable implementation of factor,
which returns a list of the prime factors of its argument, generating factorizations
is straightforward:

factorizations2 :: (Integral a) => a -> [[a]]

factorizations2 = map (map product) . setPartitions . factor

7
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Let’s try factorizations2 30:

[[30],[15,2],[10,3],[5,6],[5,3,2]] .

Lovely! However, there’s a problem: as you may have guessed, setPartitions
doesn’t do so well when given a multiset instead of a set. For example, evaluating
setPartitions [2,2,3] yields

[[[2,2,3]],[[2,2],[3]],[[2,3],[2]],[[2],[2,3]],[[2],[2],[3]]] .

The two copies of 2 are treated as if they are distinct, and we end up with both
[[2,3],[2]] and [[2],[2,3]], which are equivalent when considered as multiset
partitions. This means that an expression such as factorizations2 12 will give
duplicate results as well:

[[12],[6,2],[6,2],[3,4],[3,2,2]] .

This certainly won’t do. We need to get rid of the duplications, but how? The
easiest and most obvious way is to create a new function, msetPartitions, which
generates set partitions and then culls duplicates:

msetPartitions :: (Ord a) => [a] -> [[[a]]]

msetPartitions = nub . map (sort . map sort) . setPartitions

Normalizing the partitions with map (sort . map sort) before applying nub

is necessary, since otherwise nub will not consider partitions such as [[2,3],[2]]
and [[2],[2,3]] equal. Evaluating msetPartitions [2,2,3] yields

[[[2,2,3]],[[2,2],[3]],[[2],[2,3]],[[2],[2],[3]]]

as expected. With a definition of factorizations3 using msetPartitions in
place of setPartitions, we can now correctly compute the factorizations of 12:

[[12],[2,6],[4,3],[2,2,3]] .

Are we done? Some degree of inefficiency is clearly involved here, since throwing
away duplicate partitions means wasted work to generate them. The question is,
how much inefficiency? The code certainly has conciseness and elegance going for
it, so we might be willing to overlook a little inefficiency if it means we can have
a concise implementation that still works for all practical purposes.

Unfortunately (you probably saw this one coming), msetPartitions turns out
to be staggeringly inefficient. The worst case occurs when we have the most possi-
ble overlap between elements, namely, a multiset with n copies of the same element.
First, since setPartitions never examines the elements of its argument, it clearly
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generates the same number of partitions for such a list as it does for any other
n-element list, namely, the nth Bell number $n. Bell numbers [5, 6] count the
number of distinct set partitions of an n-element set, and satisfy the recurrence

$0 = 1; $n+1 =
n∑

k=0

(
n

k

)
$k.

(Extra credit: how does this recurrence relate to setPartitions?) Thus, the first
few Bell numbers for n > 0 are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147 . . . [7].

On the other hand, the number of distinct multipartitions of such a worst-
case multiset is the nth partition number Pn, which counts the number of ways of
writing n as a sum of positive integers. Partition numbers [8, 3] have the generating
function

(1+z+z2+· · · )(1+z2+z4+· · · )(1+z3+z6+· · · ) · · · =
∏
n>1

(∑
k>0

znk

)
=
∏
n>1

1

1− zn
,

and also satisfy a recurrence discovered by Euler,

P0 = 1; Pn = Pn−1 + Pn−2 − Pn−5 − Pn−7 + Pn−12 + Pn−15 − · · ·

=
∑

−∞<k<∞
k 6=0

(−1)k+1Pn−(3k2+k)/2,

if we stipulate that Pn = 0 when n < 0. The first few partition numbers for n > 0
are 1, 1, 2, 3, 5, 7, 11, 15, 22, 30 . . . [9].

As you can see, Bell numbers grow far more quickly than partition numbers.
(This can be shown analytically; $n grows as (n/ log n)n, whereas Pn only grows as
A
√

n/n for a certain constant A [3].) For example, msetPartitions correctly com-
putes the P10 = 42 unique multipartitions of replicate 10 1, but it takes a few
seconds to do so, since it must cull duplicates from an initial list of $10 = 115975.
And it isn’t long before things become completely hopeless: computing the modest
P30 = 5604 unique multipartitions of (replicate 30 1) in this way would require
culling duplicates from among the whopping $30 = 846749014511809332450147
(that’s 8.5× 1024) generated by setPartitions!

So, for all its conciseness, msetPartitions won’t work after all. We need a way
to directly generate all the unique partitions of a multiset, using only time linear
in the number of partitions generated.

Multiset partitions are vector partitions

In order to directly generate partitions of a multiset M , we need to impose some
sort of ordering on the subsets of M , and to be able to generate them in order.

9
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Using such an ordering, we could guarantee that the subsets in a partition always
occur in order, thus ruling out the possibility of partitions occurring multiple
times with their subsets arranged differently. Indeed, this is how setPartitions

works. Considering the elements of a set S (represented by a Haskell list) to be
“ordered” by the order of their occurrence in the list, the partitions generated
by setPartitions always contain strictly increasing subsets in increasing order
(where subsets are ordered by their first elements).

We could also order multiset subsets lexicographically, but it is not clear how
we could efficiently generate them in order. Considering some elements equal to
one another throws a big wrench into things, since we can no longer simply recurse
over a multiset one element at a time, as setPartitions does.

Suppose we have a multiset M , which has n unique elements. The key insight
is that we can represent M by a pair (v, e), where v is a vector in Nm (that is,
an m-tuple of non-negative integers), e is an ordered list of length m, and m > n.
In particular, e is a list of distinct elements which are a superset of the unique
elements of M , and v records the number of occurrences of each element (possi-
bly zero for elements not occurring in M). For example, the multiset containing
{6, 5, 7, 4, 4, 5, 4} can be represented by the vector (3, 2, 0, 1, 1) together with the
list of elements [4, 5, 29, 6, 7].

Using this representation, multiset union corresponds to componentwise vector
addition, which reduces the multiset partition problem to that of finding all sets
of vectors in Nn which sum to a given vector. In other words, multiset partitions
are vector partitions in disguise!

As an example, if we represent the multiset M = {2, 2, 3} by the vector (2, 1)
and element list [2, 3], then the partitions of M correspond to partitions of v, as
shown below:

{{{2, 2, 3}}, {{2, 2}, {3}}, {{2, 3}, {2}}, {{2}, {2}, {3}}}
∼=

{{(2, 1)}, {(2, 0), (0, 1)}, {(1, 1), (1, 0)}, {(1, 0), (1, 0), (0, 1)}}.

This is good, because it is easy to impose an ordering on vectors, and, as we will
see, they can also be efficiently generated in order.

Multisets

We will represent vectors in Haskell as [Int]. This is a simplification, but works
fine for our purposes. Multisets are represented as discussed previously:

type Vec = [Int]

data MultiSet a = MS [a] Vec deriving Show

10
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Of course, this Haskell definition of MultiSet is too lax; in particular, it doesn’t
preclude the element list and count vector having different lengths. We could
correct this by using a list of pairs instead of a pair of lists; however, most of the
time we’ll be manipulating the element list and count vector separately, and the
headache of constantly zipping and unzipping the two lists simply isn’t worth it.

Converting between multisets and regular lists is straightforward (Listing 2).
Although an Eq instance for the element type is all that is needed for the conversion,
an Ord instance allows it to be done more efficiently, so we include both as options.

fromList :: (Ord a) => [a] -> MultiSet a -- O(n lg n)

fromList = uncurry MS . unzip . map (head &&& length)

. group . sort

fromListUnord :: (Eq a) => [a] -> MultiSet a -- O(n^2)

fromListUnord xs = MS nx counts

where nx = nub xs

counts = map (\elt -> (length . filter (==elt) $ xs)) nx

toList :: MultiSet a -> [a]

toList (MS es cs) = concat $ zipWith replicate cs es

Listing 2: Converting between lists and multisets.

For example, here’s fromList [2,3,3,2,3,5]:

MS [2,3,5] [2,3,1] .

Now that we can easily convert between lists and our multiset representation,
we can get on with the real work: generating vector partitions.

Vectors

First, some notation: if u, v ∈ Nn, then u E v indicates that u is componentwise
less than or equal to v, and u 6 v indicates that u is lexicographically less than or
equal to v. In other words, u E v means that every element of u is no greater than
the corresponding element of v, whereas u 6 v implies only that u is no greater
than v in the first element where they differ. Therefore, u E v implies u 6 v, but
the converse does not hold. For example, (1, 2, 7) 6 (1, 3, 5) (since 2 6 3), but
(1, 2, 7) 5 (1, 3, 5) (since 7 � 5).

11
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A few simple utility functions for manipulating Vec values are shown in Listing 3.
Note that the Ord instance for lists is lexicographical. Thus, for u,v :: Vec, the
Haskell expression u <= v corresponds exactly to the notation u 6 v introduced
earlier. The relation u E v is implemented by the custom (<|=) operator.

-- recall that type Vec = [Int].

-- componentwise comparison of vectors.

(<|=) :: Vec -> Vec -> Bool

xs <|= ys = and $ zipWith (<=) xs ys

-- (vUnit v) produces a unit vector of the same length as v.

vUnit :: Vec -> Vec

vUnit [] = []

vUnit [_] = [1]

vUnit (_:xs) = 0 : vUnit xs

-- (vZero v) produces a zero vector of the same length as v.

vZero :: Vec -> Vec

vZero = map (const 0)

-- test for the zero vector.

vIsZero :: Vec -> Bool

vIsZero = all (==0)

-- do vector arithmetic componentwise.

(.+), (.-) :: Vec -> Vec -> Vec

(.+) = zipWith (+)

(.-) = zipWith (-)

Listing 3: Implementation of Vec.

Generating vector partitions

Given a vector v, the general method we will use to recursively generate all its
partitions is as follows: first, we include the singleton set {v} as a special case; then,
for each smaller vector v′ in some appropriate subset of {u : u E v}, recursively
generate all partitions P ′ of v − v′, and combine to form the partitions {v′} ∪ P ′.

12
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Since the vectors in each P ′ sum to v−v′, adding v′ will create a partition of v. All
we have left to determine is what the “appropriate subset” of {u : u E v} should
be.

First, each partition should contain vectors in lexicographically non-decreasing
order; as discussed before, this will guarantee that we don’t get duplicate parti-
tions. In order to enforce this restriction as we recurse, we must keep track of
a current lower limit vL, which is the largest (hence, most recent) vector in the
current partially built partition. We will only choose vectors v′ for which v′ > vL.

Second, we need not bother with vectors v′ for which v − v′ < v′, since in that
case it would be impossible to complete a non-decreasing partition starting with
v′. In other words, we only need to consider vectors v′ which are less than or equal
to “half” of v, defined as the vector in the exact middle of the lexicographically
ordered list of vectors u E v (rounding down if the list has an even number of
elements).

In summary, we want to choose vectors v′ for which v′ E v and 1
2
v > v′ >

vL. To realize this, we first need a function to compute “half” of a vector v.
The implementation of vHalf is straightforward, recursively splitting along each
dimension until finding one that splits evenly, then copying the remainder of the
vector. We also need a function to generate a lexicographically sorted list of vectors
which fall within a certain range. The function withinFromTo takes three vectors
m, s, and e, and generates the list of vectors v for which m D v and s > v > e;
that is, vectors falling within the n-dimensional box framed by the origin and m,
starting from s, and running down to e. Listing 4 puts all of these ideas together.

Let’s try an example, and compute the partitions of the vector (2, 1):

[[[2,1]],[[1,0],[1,1]],[[0,1],[2,0]],[[0,1],[1,0],[1,0]]] .

Looking good! We’re almost done, but there is still one loose end to tie up.
The single quote at the end of withinFromTo’ (Listing 4) is not a typo; in fact,
withinFromTo’ is an impostor! It only illustrates the intended behavior of its
quote-less cousin used in the definition of vPartitions. Although withinFromTo’

elegantly matches its intuitive definition described earlier, it is inefficient. Just like
msetPartitions, it generates some vectors only to discard them. Since our goal
is to write “productive” code that doesn’t do any unnecessary work, we’ll actually
use a more efficient version at the cost of some readability.

Efficiently enumerating vectors

The real withinFromTo is shown in Listing 5. The implementation of this function
is tricky to get right; careful attention must be paid to appropriate base cases,
especially the case when s 5 m. In such a case we must first “clip” s against m

13
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vPartitions :: Vec -> [[Vec]]

vPartitions v = vPart v (vUnit v) where

vPart v _ | vIsZero v = [[]]

vPart v vL = [v] : [ v’ : p’ | v’ <- withinFromTo v (vHalf v) vL,

p’ <- vPart (v .- v’) v’ ]

vHalf :: Vec -> Vec

vHalf [] = []

vHalf (x:xs) | (even x) = (x ‘div‘ 2) : vHalf xs

| otherwise = (x ‘div‘ 2) : xs

downFrom :: Int -> [Int]

downFrom n = [n,(n-1)..0]

-- (within m) generates a decreasing list of vectors v <|= m.

within :: Vec -> [Vec]

within = sequence . map downFrom

-- This is a lie.

withinFromTo’ :: Vec -> Vec -> Vec -> [Vec]

withinFromTo’ m s e =

takeWhile (>= e) . dropWhile (> s) . within $ m

Listing 4: Computing vector partitions.

14
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before proceeding. Otherwise we risk generating vectors v for which v 6 s but
v 5 m. In the general case, we recurse over each dimension and ensure that the
generated vectors stay lexicographically between s and e.

clip :: Vec -> Vec -> Vec

clip = zipWith min

withinFromTo :: Vec -> Vec -> Vec -> [Vec]

withinFromTo m s e | not (s <|= m) = withinFromTo m (clip m s) e

withinFromTo m s e | e > s = []

withinFromTo m s e = wFT m s e True True

where

wFT [] _ _ _ _ = [[]]

wFT (m:ms) (s:ss) (e:es) useS useE =

let start = if useS then s else m

end = if useE then e else 0

in

[x:xs | x <- [start,(start-1)..end],

let useS’ = useS && x==s,

let useE’ = useE && x==e,

xs <- wFT ms ss es useS’ useE’ ]

Listing 5: A better implementation of withinFromTo.

A walk in the park

Now that we’ve descended into the depths, tamed multisets, slain the Vec beast,
and bludgeoned withinFromTo into submission, the climb back out will be nothing
but a scenic stroll! We have only to wave one of our magic vector functions, and
Things will Happen. Our vector functions are so magical, in fact, that we can use
them to compute not just multiset partitions, but a number of other interesting
functions as well.

For one, consider the problem of splitting an integer n into a multiset of smaller
integers whose sum is n. Such integer partitions can be seen as degenerate vector
partitions. In particular, the partitions of the integer n correspond exactly to
partitions of the 1-dimensional vector (n). This is implemented by the function
intPartitions, shown in Listing 6. For example, intPartitions 5 yields

[[5],[2,3],[1,4],[1,2,2],[1,1,3],[1,1,1,2],[1,1,1,1,1]] .

15



The Monad.Reader Issue 8

-- Integer partitions.

intPartitions :: Int -> [[Int]]

intPartitions = map (map head) . vPartitions . return

-- Power sets.

mPowSet :: MultiSet a -> [MultiSet a]

mPowSet (MS elts v) = map (MS elts) $ within v

powSet :: (Ord a) => [a] -> [[a]]

powSet = map toList . mPowSet . fromList

powSetUnord :: (Eq a) => [a] -> [[a]]

powSetUnord = map toList . mPowSet . fromListUnord

-- Partitions.

mPartitions :: MultiSet a -> [[MultiSet a]]

mPartitions (MS elts v) = map (map (MS elts)) $ vPartitions v

partitions :: (Ord a) => [a] -> [[[a]]]

partitions = map (map toList) . mPartitions . fromList

partitionsUnord :: (Eq a) => [a] -> [[[a]]]

partitionsUnord = map (map toList) . mPartitions . fromListUnord

Listing 6: Casually waving some magic vector functions around.

16
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It seems to work! As a check, we can also (rather inefficiently!) compute the
partition numbers [9] with map (length . intPartitions) [1..]:

[1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490] ...

In particular, length $ intPartitions 30 yields 5604 almost instantly. This
is clearly an improvement over length $ msetPartitions (replicate 30 1),
which theoretically produces the same value but probably wouldn’t finish before
the heat death of the universe.

Computing power sets is easy, too (Listing 6), since there is a natural bijection
between unique subsets of a multiset (e, v) and the set of vectors u E v. For
example, here’s powSet [2,2,3,3]:

[[2,2,3,3],[2,2,3],[2,2],[2,3,3],[2,3],[2],[3,3],[3],[]] .

Last (but not least!), finding partitions of a multiset (also in Listing 6) is now
a simple matter of finding partitions of the representative count vector. Here’s
partitions [2,2,3]:

[[[2,2,3]],[[2],[2,3]],[[3],[2,2]],[[3],[2],[2]]]

No repeated partitions here!

Factorizations, reloaded

We can finally use the partitions function for its original intended purpose, to
efficiently generate integer factorizations. In fact, we can use powSet to efficiently
generate divisors, as well. Listing 7 shows how. (This certainly is not the fastest
or most robust factoring code possible, but it isn’t really the point. Any im-
plementation of factor could be combined with partitions and powSet in this
way.)

For example, we can compute the factorizations of 30:

[[30],[15,2],[3,10],[5,6],[5,3,2]] .

But that’s easy, since 30 has no repeated prime factors. Let’s try something like
24:

[[24],[6,4],[2,12],[2,2,6],[3,8],[3,2,4],[3,2,2,2]] .

Or how about length $ factorizations 1073741824?

5604
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primes :: (Integral a) => [a]

primes = 2 : 3 : [ p | p <- [5,7..], isPrime p ]

isPrime :: (Integral a) => a -> Bool

isPrime n = all ((/= 0) . mod n) $ upToSqrt n primes

upToSqrt :: (Integral a) => a -> [a] -> [a]

upToSqrt n = takeWhile (<= (round . sqrt . fromIntegral $ n))

factor :: (Integral a) => a -> [a]

factor 1 = []

factor n = factor’ n [] primes

where

factor’ n fs ps@(p:pt)

| (fromIntegral p > (sqrt . fromIntegral $ n)) = n:fs

| (n ‘mod‘ p == 0) = factor’ (n ‘div‘ p) (p:fs) ps

| otherwise = factor’ n fs pt

divisors :: (Integral a) => a -> [a]

divisors = map product . powSet . factor

factorizations :: (Integral a) => a -> [[a]]

factorizations = map (map product) . partitions . factor

Listing 7: Factorizations as multiset partitions.
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Funny, I think I remember seeing that number somewhere recently. . .
As a final comment, the reader may note that we are actually taking advantage

of the fact that multisets and vectors also correspond to monomials. For exam-
ple, the multiset {1, 1, 2, 3, 3, 3, 3} corresponds to the monomial x2

1x2x
4
3. Positive

integers can be viewed as monomials over the primes, 2α23α35α5 . . . , which leads
directly to the code in Listing 7. Writing a function to compute general monomial
factorizations is left as an exercise for the reader.
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Type-Level Instant Insanity

by Conrad Parker 〈conrad@dl.kuis.kyoto-u.ac.jp〉

We illustrate some of the techniques used to perform computations in the Haskell
Type System by presenting a complete type-level program. Programming at this
level is often considered an obscure art with little practical value, but it need not
be so. We tame this magic for the purpose of practical Haskell programming.

Overview

This article discusses an implementation of Instant Insanity, an appropriately
named puzzle game. We will first familiarize ourselves with a straightforward
Haskell solution to the puzzle, and then translate that solution so that it is eval-
uated by the Haskell Type System at compile time. By discussing the implemen-
tation of a complete solution to a problem, we necessarily provide more than just
the flavour of programming in the Haskell Type System.

Rather than simply demonstrating clever tricks, we progressively introduce use-
ful type-level programming features. We introduce constructs similar to the func-
tions, lists, maps and filters of conventional functional programming, and in so
doing make clear the basic techniques required to construct programs in this man-
ner. Only after building an understanding of the syntactical oddities and transfor-
mations involved in programming in the Haskell Type System do we consider the
practical aspects of using these techniques in conventional Haskell programming.

Familiarity with the syntax of the Haskell Type System is a prerequisite for
understanding the details of general Haskell programming. What better way to
build familiarity with something than to hack it to bits? Through this tutorial,
we hope to show that the Haskell Type System is not as scary as it first seems.
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Textbook implementation

In a discussion of problem-solving via back-tracking, Bird and Wadler [1] introduce
the following puzzle, Instant Insanity:

It consists of four cubes, with faces coloured blue, green, red or white.
The problem is to arrange the cubes in a vertical pile such that each
visible column of faces contains four distinct colours.

The solution provided in Listing 8 stacks the cubes one at a time, trying each
possible orientation of each cube.

Our task is to translate this solution into the Haskell Type System.

Type-Level Implementation

The Haskell Type System is a completely symbolic language with very few ameni-
ties. You are swimming in a sea of atomic constants, like X. These aren’t numeric
constants; they do not hold a value. They simply exist, and all you can do is create
relations between them. If you want features like numbers and arithmetic, or even
boolean logic, then you have to create them yourself.

In order to discuss our implementation, we will treat the Haskell Type System
as a programming system in its own right. Although the keywords such as data
and class are named for their purpose in Haskell, when introducing them we will
ignore that purpose and provide an alternative interpretation within the Haskell
Type System. Only after completing the implementation of Instant Insanity will
we relate these concepts back to conventional Haskell programming.

Of course, the Haskell Type System wasn’t explicitly designed for programming,
and there are some limitations which we’ll cover later. But for now, let’s jump
right in!

Type system features

This tutorial uses the Haskell98 type system extended with multi-parameter type-
classes and undecidable instances. We need to enable some GHC extensions to
play with this type-hackery:

$ ghci -fglasgow-exts -fallow-undecidable-instances

These are included in your GHC; you just need to pass the options to enable them,
as they were not part of the Haskell98 language specification.
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cubes = ["BGWGBR", "WGBWRR", "GWRBRR", "BRGGWW"]

-- Rotate a cube 90 degrees over its Z-axis, leaving up and down in place.

rot [u, f, r, b, l, d] = [u, r, b, l, f, d]

-- Twist a cube around the axis running from the upper-front-right

-- corner to the back-left-down corner.

twist [u, f, r, b, l, d] = [f, r, u, l, d, b]

-- Exchange up and down, front and left, back and right.

flip [u, f, r, b, l, d] = [d, l, b, r, f, u]

-- Compute all 24 ways to orient a cube.

orientations c =

[c’’’ | c’ <- [c, rot c, rot (rot c), rot (rot (rot c))],

c’’ <- [c’, twist c’, twist (twist c’)],

c’’’ <- [c’’, flip c’’]]

-- Compute which faces of a cube are visible when placed in a pile.

visible [u, f, r, b, l, d] = [f, r, b, l]

-- Two cubes are compatible if they have different colours on every

-- visible face.

compatible c c’ = and [x /= x’ | (x, x’) <- zip (visible c) (visible c’)]

-- Determine whether a cube can be added to pile of cubes, without

-- invalidating the solution.

allowed c cs = and [compatible c c’ | c’ <- cs]

-- Return a list of all ways of orienting each cube such that no side of

-- the pile has two faces the same.

solutions [] = [[]]

solutions (c:cs) = [c’ : cs’ | cs’ <- solutions cs,

c’ <- orientations c,

allowed c’ cs’]

main = print $ solutions cubes

Listing 8: The Bird-Wadler solution to Instant Insanity
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Flipping out

We are going to declare new functions called all , flip, map and filter , so we hide
the versions in Prelude.

import Prelude hiding (all ,flip,map, filter)

⊥ (Bottom)

As we are working in the type system we don’t actually care about the values of
any of our variables, only their types. There is one special value which is a member
of every type (i.e. it can be “cast” as any type we choose). For historical reasons it
is called bottom, and in Haskell it is written undefined. When it is typeset here,
it looks like this: ⊥.

For example:

*Main> :type undefined::Int

⊥ :: Int :: Int

This simply confirms that the type of the value ⊥ :: Int is Int .

u = ⊥

To shorten expressions later in this article, we have abbreviated undefined (⊥)
to the variable u. This is often convenient when programming in the Haskell Type
System.

Simple types

Ok, let’s get started.
We note that there are four possible colours. Rather than using arbitrary char-

acters to represent colours, we make some type-safe definitions.
In this problem, the colours of the faces of cubes are atomic. They cannot be

divided any further, and it is irrelevant to the problem to define them in terms of
any other values. The puzzle is no easier if the red faces are pink instead.

In the Haskell Type System, we use the keyword data to introduce atomic
constants:

data R -- Red
data G -- Green
data B -- Blue
data W -- White
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These constants are concrete types, which means that it is possible to instantiate
variables in these types. However, as we have not given these types any construc-
tors, the only valid value for each is ⊥. We use them to represent atomic constants
in the Haskell Type System.

We can check that ⊥ is a valid value of type R:

*Main> :type undefined::R

⊥ :: R :: R

Parameterized types

A cube is a thing that can have six faces. In the Haskell Type System, we use the
keyword data to introduce such a thing:

data Cube u f r b l d

Wait a minute – didn’t we just use the keyword data to introduce atomic con-
stants? Yes, and Cube is also atomic. That is to say, the concept of a thing that
can have six faces is atomic, in the context of this puzzle. No matter how big
your hammer is or how frustrated you are, it’s not within the rules of the puzzle
to break down a cube into something with more, or fewer, faces.

So, R, G , B , W and Cube are all atomic, but they are different kinds of thing.

*Main> :kind R

R :: ∗

*Main> :kind Cube

Cube :: ∗ → ∗ → ∗ → ∗ → ∗ → ∗ → ∗

In the Haskell Type System, the word kind is used to describe the structure of
a type, and types must be of the same kind in order to be used in the same way.

Whereas R is a concrete type that we could instantiate variables in, Cube is not:

*Main> :type undefined :: Cube

<interactive>:1:13:

Kind error: ‘Cube’ is not applied to enough type arguments

In an expression type signature: Cube

In the expression: undefined :: Cube
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The Cube type needs to be applied to type arguments, namely u f r b l d . If
we substitute concrete types for these arguments, the result is a concrete type. So,
one way to think about Cube is that it is like a function, but at the type level: it
takes types as arguments and returns types. We say that Cube is parameterized
over the type arguments u f r b l d .

Now we can use the types we prepared earlier, R, G , B , W , as type arguments
to the type-level function Cube to produce concrete types:

*Main> :type undefined :: Cube R R R R R R -- a red cube

⊥ :: Cube R R R R R R :: Cube R R R R R R

*Main> :type undefined :: Cube R G B R G B -- a colourful cube

⊥ :: Cube R G B R G B :: Cube R G B R G B

*Main> :type undefined :: Cube B W G G R G -- another cube

⊥ :: Cube B W G G R G :: Cube B W G G R G

Type aliases

Now we can define the actual cubes in our puzzle as “outputs” of the type function
Cube, and in order to write clear code (in the Haskell Type System) we will create
some handy aliases. In the Haskell Type System, we use the keyword type to
introduce type aliases:

A completely red cube:

type CubeRed = Cube R R R R R R

A completely blue cube:

type CubeBlue = Cube B B B B B B

The cubes available in the problem at hand:

cubes = ["BGWGBR", "WGBWRR", "GWRBRR", "BRGGWW"]

type Cube1 = Cube B G W G B R
type Cube2 = Cube W G B W R R
type Cube3 = Cube G W R B R R
type Cube4 = Cube B R G G W W
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*Main> :kind Cube1

Cube1 :: ∗
We see that Cube1 has the same kind as the color red, R, has. And indeed,

Cube1 is a concrete type:

*Main> :type undefined::Cube1

⊥ :: Cube1 :: Cube1

Multi-parameter type classes

We would like to define the following transformations on Cubes:

rot [u, f, r, b, l, d] = [u, r, b, l, f, d]

twist [u, f, r, b, l, d] = [f, r, u, l, d, b]

flip [u, f, r, b, l, d] = [d, l, b, r, f, u]

In the Haskell Type System, we use the keyword class to introduce functions. At
first, we will simply introduce a collection of plain Haskell functions. These are
grouped under the parameterized type class Transforms :

class Transforms u f r b l d where
rot :: Cube u f r b l d → Cube u r b l f d
twist :: Cube u f r b l d → Cube f r u l d b
flip :: Cube u f r b l d → Cube d l b r f u

This collection of declarations defines an interface, and that interface consists of
three functions rot , twist and flip. For example, rot takes a Cube as input, and
outputs a different type of Cube. The exact types of these Cubes are related to
the class parameters.

Two different substitutions of the class parameters would define different inter-
faces, as the resulting types of the functions rot , twist and flip would be different.
Hence Transforms is actually a class constructor – we can use it to generate new
classes, but it is not itself a concrete class definition. Programming in the Haskell
Type System, we are only interested in the types of these functions, which are
dictated by the class definition. Accordingly, we don’t need to specify anything
about their implementation when we create an instance; we can simply declare
the functions to be ⊥.

For example, we could create an instance of Transforms which applies only if
all six parameters (faces of cubes) are green:
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instance Transforms G G G G G G where
rot = ⊥
twist = ⊥
flip = ⊥

However, there is no need to instantiate Transforms for every possible combi-
nation of faces. We can fill in any or all parameters with variables, which can
represent any concrete type (of kind *):

instance Transforms u f r b l d where
rot = ⊥
twist = ⊥
flip = ⊥

We are now able to evaluate some simple type transformations, such as:

*Main> :type rot (undefined::Cube1)

rot (⊥ :: Cube1 ) :: Cube B W G B G R

*Main> :type flip (rot (undefined::Cube1))

flip (rot (⊥ :: Cube1 )) :: Cube R G B G W B

*Main> :type twist (flip (rot (undefined::Cube1)))

twist (flip (rot (⊥ :: Cube1 ))) :: Cube G B R W B G

You can see that we can already perform some basic computations, entirely in the
type system.

Now, do you take the red cube, or the blue cube?

Functional Dependencies

So far we have seen how to construct simple types, and perform type transforma-
tions that transform a parameterized type into a differently parameterized type.

For this puzzle we will need some boolean algebra, so let’s create it. First we
make the truth values:

data True
data False

The first boolean function we will need is And that relates three values: two inputs
and one output. We express the fact that the output b is dependent on the two
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inputs b1 , b2 by adding the dependency annotation b1 b2 → b. We use a vertical
bar to append this dependency annotation:

class And b1 b2 b | b1 b2 → b where
and :: b1 → b2 → b

We can define And by simply listing out its complete truth table:

instance And True True True where and = ⊥
instance And True False False where and = ⊥
instance And False True False where and = ⊥
instance And False False False where and = ⊥

When using functional dependencies in this way, we are doing logic programming
in the Haskell Type System, using class to introduce type-level functions and using
the last class parameter as the “output.”

Lists

We can define lists in the type system using the following atoms:

data Nil
data Cons x xs

The data type Nil represents the empty list; the Cons data type is used to append
an element to a list. With this syntax, Cons x Nil denotes a list containing
only one element; we can use Cons multiple times to build longer lists. However,
this quickly becomes difficult to read. For example, the list [R,G ,B ] would be
represented by Cons R (Cons G (Cons B Nil)).

GHC allows us to introduce an alternative infix notation to represent Cons .
Type-level infix operators must begin with a colon, so we choose ::: and define:

data x ::: xs

infixr 5 :::

The infixr 5 here sets the precedence level; we make ::: bind tightly so that we
do not need to use parentheses inside of lists. Now the list [R,G ,B ] can be
represented more clearly by R ::: G ::: B ::: Nil.

Type constraints

We can define recursive functions in the Haskell Type System using this represen-
tation of lists. However, in order to do so we must use a type constraint. For
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a recursively defined list function, we use a type constraint to say that the value
for x ::: xs uses a recursive call on xs . In general, a type constraint is used to set
preconditions on a function; the given function definition is only valid when the
preconditions are met. By carefully constructing the constraints you can set up a
recursion, or call out to other type-level functions.

For example, to concatenate two arbitrary lists we would write:

class ListConcat l1 l2 l | l1 l2 → l where
listConcat :: l1 → l2 → l

instance ListConcat Nil l l where listConcat = ⊥
instance (ListConcat xs ys zs)

⇒ ListConcat (x ::: xs) ys (x ::: zs) where listConcat = ⊥

*Main> :type listConcat (u:: R ::: G ::: B ::: Nil) (u:: W ::: Nil)

listConcat (u ::R:::G :::B :::Nil) (u ::W :::Nil)::(:::) R ((:::) G ((:::) B ((:::) W Nil)))

Note that the type constraint, ListConcat xs ys zs justifies the recursive call.

Applyable type functions

For this puzzle, we need to be able to do things like flip each of the cubes in a list,
so let’s build towards something like map, at the type level. First we will need a
way of abstracting the application of a type-level function, so we introduce a class
Apply :

class Apply f a b | f a → b where
apply :: f → a → b

The Apply class takes a function f of one argument, and an argument a, and
returns the application of f to a.

Unfortunately, the functions rot , twist , and flip that we defined earlier are not
declared at the type level; they cannot be passed to our type-level Apply . If we
try to do so, we end up with:

*Main> :type apply rot (u::Cube1)

apply rot (u :: Cube1 ) :: forall u f r b l d b1 ◦
(Transforms u f r b l d ,
Apply (Cube u f r b l d → Cube u r b l f d) Cube1 b1 ) ⇒ b1
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Instead, we need to create types to name each of these operations:

data Rotation
data Twist
data Flip

We defined Apply as a parameterized interface. Let’s instantiate it for each of our
transform types:

instance Apply Rotation (Cube u f r b l d) (Cube u r b l f d)
where apply = ⊥

instance Apply Twist (Cube u f r b l d) (Cube f r u l d b)
where apply = ⊥

instance Apply Flip (Cube u f r b l d) (Cube d l b r f u)
where apply = ⊥

With all these pieces in place, we can now apply our Rotation function to an
example cube:

*Main> :type apply (u::Rotation) (u::Cube1)

apply (u :: Rotation) (u :: Cube1 ) :: Cube B W G B G R

Map and Filter

We can now create a function that recurses over a list and Applys another function
f to each element. This is the type-level equivalent of fthe map function from the
Haskell Prelude.

class Map f xs zs | f xs → zs where
map :: f → xs → zs

If we call Map over the empty list, we get an empty list:

instance Map f Nil Nil where map = ⊥

In the Cons case we use two type constraints: one to call Apply on the head
element, and one to call Map on the tail. The result will simply join these two
values. As we recurse down the list x ::: xs , we build the result z ::: zs :

instance (Apply f x z ,Map f xs zs)
⇒ Map f (x ::: xs) (z ::: zs) where map = ⊥

Once again, we show the map function in action, by mapping the Flip operation
on a list of two cubes:
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*Main> :type map (u::Flip) (u:: Cube1 ::: (Cube2 ::: Nil))

map (u :: Flip) (u :: Cube1 ::: (Cube2 ::: Nil)) ::

(:::) (Cube R B G W G B) ((:::) (Cube R R W B G W ) Nil)

We can build a Filter function similarly:

class Filter f xs zs | f xs → zs where
filter :: f → xs → zs

instance Filter f Nil Nil where filter = ⊥
instance (Apply f x b,Filter f xs ys ,AppendIf b x ys zs)

⇒ Filter f (x ::: xs) zs where filter = ⊥

Here we have introduced a third constraint, AppendIf , which takes a boolean value
b, a value x, and a list ys . The given value x is appended to ys only if b is True,
otherwise ys is returned unaltered:

class AppendIf b x ys zs | b x ys → zs
instance AppendIf True x ys (x ::: ys)
instance AppendIf False x ys ys

Hence, Filter recurses down a list x ::: xs , and builds the list zs by appending only
those values of x for which f x is True.

List Comprehensions

Unfortunately we cannot directly mimic list comprehensions in the Haskell Type
System, but we can translate the meaning of a given list comprehension using the
type-level list functions that we have defined.

For example, building a list of the possible orientations of a cube involves ap-
pending a list of the possible applications of flip, so we will need to be able to
map over a list and append the original list. The original list comprehension we
are translating was:

orientations c

= [c’’’ | ..., c’’’ <- [c’’, flip c’’]]

We create a MapAppend class in order to compose Map and ListConcat :

class MapAppend f xs zs | f xs → zs where
mapAppend :: f → xs → zs
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The MapAppend class has two instances:

instance MapAppend f Nil Nil where mapAppend = ⊥
instance (Map f xs ys ,ListConcat xs ys zs)

⇒ MapAppend f xs zs where mapAppend = ⊥

Further, we will need to be able to do the same twice for twist :

orientations c

= [c’’’ | ..., c’’ <- [c’, twist c’, twist (twist c’)], ...]

class MapAppend2 f xs zs | f xs → zs where
mapAppend2 :: f → xs → zs

instance MapAppend2 f Nil Nil where mapAppend2 = ⊥
instance (Map f xs ys ,MapAppend f ys ys ′,ListConcat xs ys ′ zs)

⇒ MapAppend2 f xs zs where mapAppend2 = ⊥

and three times for rot :

orientations c

= [c’’’ | c’ <- [c, rot c, rot (rot c), rot (rot (rot c))], ...]

class MapAppend3 f xs zs | f xs → zs where
mapAppend3 :: f → xs → zs

instance MapAppend3 f Nil Nil where mapAppend3 = ⊥
instance (Map f xs ys ,MapAppend2 f ys ys ′,ListConcat xs ys ′ zs)

⇒ MapAppend3 f xs zs where mapAppend3 = ⊥

Orientations

The full list comprehension for generating all possible orientations of a cube builds
upon all combinations of rot , twist and flip:

orientations c =

[c’’’ | c’ <- [c, rot c, rot (rot c), rot (rot (rot c))],

c’’ <- [c’, twist c’, twist (twist c’)],

c’’’ <- [c’’, flip c’’]]
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We will implement Orientations as an Applyable type function. In turn, it is
defined in terms of applications of Rotation, Twist and Flip, invoked via the various
MapAppend functions:

data Orientations

instance (MapAppend Flip (c ::: Nil) fs ,MapAppend2 Twist fs ts ,
MapAppend3 Rotation ts zs)
⇒ Apply Orientations c zs
where apply = ⊥

For any Cube, this function generates the 24 possible orientations:

*Main> :type apply (u::Orientations) (u::Cube1)

apply (u :: Orientations) (u :: Cube1 ) ::
(:::) (Cube B G W G B R) ((:::) (Cube R B G W G B)

((:::) (Cube G W B B R G) ((:::) (Cube B G R G B W )
((:::) (Cube W B G R G B) ((:::) (Cube G R B B W G)
((:::) (Cube B W G B G R) ((:::) (Cube R G W G B B)
((:::) (Cube G B B R W G) ((:::) (Cube B R G B G W )
((:::) (Cube W G R G B B) ((:::) (Cube G B B W R G)
((:::) (Cube B G B G W R) ((:::) (Cube R W G B G B)
((:::) (Cube G B R W B G) ((:::) (Cube B G B G R W )
((:::) (Cube W R G B G B) ((:::) (Cube G B W R B G)
((:::) (Cube B B G W G R) ((:::) (Cube R G B G W B)
((:::) (Cube G R W B B G) ((:::) (Cube B B G R G W )
((:::) (Cube W G B G R B) ((:::) (Cube G W R B B G)
Nil)))))))))))))))))))))))

Stacking Cubes

Given two cubes (Cube u1 f1 r1 b1 l1 d1 ) (Cube u2 f2 r2 b2 l2 d2 ), we now
want to check that none of the corresponding visible faces are the same colour: the
front sides f1 and f2 are not equal, and the right sides r1 and r2 are not equal,
and so on. In short, we want to determine whether:

(f1 6= f2 ) ∧ (r1 6= r2 ) ∧ (b1 6= b2 ) ∧ (l1 6= l2 )

In order to do this, we will first need to define the 6= relation for all four colours.
Given two cubes, we can then apply this relations to each pair of visible faces to
get four boolean values. To check that all of these are True, we will construct a list
of those four values, and then write a generic list function to check if all elements
of a list are True.
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Not Equal

To define the 6= relation, we introduce a new class:

class NE x y b | x y → b where
ne :: x → y → b

We are going to use NE to instantiate type comparisons for the faces of our cube.
Recall that these faces are of the atomic types R, G , B , W , and we have not yet
defined any relation between these atomic types.

instance NE R R False where ne = ⊥
instance NE R G True where ne = ⊥
instance NE R B True where ne = ⊥
instance NE R W True where ne = ⊥
instance NE G R True where ne = ⊥
instance NE G G False where ne = ⊥
instance NE G B True where ne = ⊥
instance NE G W True where ne = ⊥
instance NE B R True where ne = ⊥
instance NE B G True where ne = ⊥
instance NE B B False where ne = ⊥
instance NE B W True where ne = ⊥
instance NE W R True where ne = ⊥
instance NE W G True where ne = ⊥
instance NE W B True where ne = ⊥
instance NE W W False where ne = ⊥

Note that our class NE is very different from the class Eq defined in Haskell:

*Main> :info Eq

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

-- Imported from GHC.Base

...

Whereas Eq is used to describe types for which it is possible to compare instances
for equality, NE directly compares types.
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All

Now, we define a function all to check if all elements of a list are True.

class All l b | l → b where
all :: l → b

instance All Nil True where all = ⊥
instance All (False ::: xs) False where all = ⊥
instance (All xs b) ⇒ All (True ::: xs) b where all = ⊥

The constraint (All xs b) ⇒ All (True :::xs) b says that the output b of All (True :::
xs) b has the same value as the output b of All xs b; ie. that if the head of the list
is True, then the value of All is determined by the rest of the list.

Once again, we can check that all behaves as we expect:

*Main> :type all (u::Nil)

all (u :: Nil) :: True

*Main> :type all (u:: False ::: Nil)

all (u :: False ::: Nil) :: False

*Main> :type all (u:: True ::: False ::: Nil)

all (u :: True ::: False ::: Nil) :: False

*Main> :type all (u:: True ::: True ::: True ::: Nil)

all (u :: True ::: True ::: True ::: Nil) :: True

Compatible

We can now write the compatibility check in the the Haskell Type System, that
corresponds to the original compatible function:

visible [u, f, r, b, l, d] = [f, r, b, l]

compatible c c’ =

and [x /= x’ | (x, x’) <- zip (visible c) (visible c’)]
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We introduce a new Compatible class. It should check that no corresponding visible
faces are the same colour.

class Compatible c1 c2 b | c1 c2 → b where
compatible :: c1 → c2 → b

We will do this by evaluating the relationship NE for each pair of corresponding
visible faces, giving four booleans bF , bR, bB , and bL. Whether or not the two
Cubes are compatible is then determined by All (bF ::: bR ::: bB ::: bL ::: Nil).

instance (NE f1 f2 bF ,NE r1 r2 bR,NE b1 b2 bB ,NE l1 l2 bL,
All (bF ::: bR ::: bB ::: bL ::: Nil) b)
⇒ Compatible (Cube u1 f1 r1 b1 l1 d1 ) (Cube u2 f2 r2 b2 l2 d2 ) b
where compatible = ⊥

A completely red cube is obviously compatible with a completely blue cube:

*Main> :type compatible (u::Cube R R R R R R) (u::Cube B B B B B B)

compatible (u :: Cube R R R R R R) (u :: Cube B B B B B B) :: True

whereas if we paint their front sides green then they are no longer compatible:

*Main> :type compatible (u::Cube R R G R R R) (u::Cube B B G B B B)

compatible (u :: Cube R R G R R R) (u :: Cube B B G B B B) :: False

Allowed

The above Compatible class checks a cube for compatibility with another single
cube. In the puzzle, a cube needs to be compatible with all the other cubes in the
pile.

allowed c cs = and [compatible c c’ | c’ <- cs]

We write a class to check for compatibility with each of a list of cubes. This class
generalizes Compatible over lists:

class Allowed c cs b | c cs → b where
allowed :: c → cs → b

instance Allowed c Nil True where allowed = ⊥
instance (Compatible c y b1 ,Allowed c ys b2 ,And b1 b2 b)

⇒ Allowed c (y ::: ys) b where allowed = ⊥

Sure enough, we can now test the allowed function:

*Main> :type allowed (u::CubeRed) (u:: CubeBlue ::: CubeRed ::: Nil)

allowed (u :: CubeRed) (u :: CubeBlue ::: CubeRed ::: Nil) :: False
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Solution

We are now ready to tackle the implementation of solutions :

solutions [] = [[]]

solutions (c:cs) = [c’ : cs’ | cs’ <- solutions cs,

c’ <- orientations c,

allowed c’ cs’]

We will create a corresponding class Solutions , which takes a list of Cubes as input,
and returns a list of possible solutions, where each solution is a list of Cubes in
allowed orientations.

class Solutions cs ss | cs → ss where
solutions :: cs → ss

The base case for Solutions is the list containing the empty list, [[ ] ], which we
represent by Nil :::Nil . The recursive step considers all orientations of the topmost
Cube:

instance Solutions Nil (Nil ::: Nil)
where solutions = ⊥

instance (Solutions cs sols ,Apply Orientations c os ,
AllowedCombinations os sols zs)
⇒ Solutions (c ::: cs) zs
where solutions = ⊥

The AllowedCombinations class recurses across the solutions so far, checking each
against the given orientations.

class AllowedCombinations os sols zs | os sols → zs
instance AllowedCombinations os Nil Nil
instance (AllowedCombinations os sols as ,MatchingOrientations os s bs ,

ListConcat as bs zs)
⇒ AllowedCombinations os (s ::: sols) zs

Finally, the MatchingOrientations class recurses across the orientations of the new
cube, checking each against a particular solution sol .

class MatchingOrientations os sol zs | os sol → zs
instance MatchingOrientations Nil sol Nil
instance (MatchingOrientations os sol as ,

Allowed o sol b,AppendIf b (o ::: sol) as zs)
⇒ MatchingOrientations (o ::: os) sol zs
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If the orientation is allowed, then the combination o is added to the existing
solutions sol , by forming the type o ::: sol .

Note that we have not been able to make use of the previously defined Filter
because it requires a one-argument Applyable function. As we lack currying, we
are unable to construct such a function on the fly. However, we can make use of
the more generic AppendIf (defined on page 32) to handle the filtering constraint.

Finally, we can solve the puzzle for the given cubes:

type Cubes = (Cube1 ::: Cube2 ::: Cube3 ::: Cube4 ::: Nil)

*Main> :type solutions (u::Cubes)

solutions (u :: Cubes) ::
(:::) ((:::) (Cube G B B R W G) ((:::) (Cube R G R W B W )

((:::) (Cube R W G B R R) ((:::) (Cube W R W G G B) Nil))))
((:::) ((:::) (Cube G B B W R G) ((:::) (Cube W R G B W R)

((:::) (Cube R G W R B R) ((:::) (Cube B W R G G W ) Nil))))
((:::) ((:::) (Cube G W B B R G) ((:::) (Cube R B G R W W )

((:::) (Cube R R W G B R) ((:::) (Cube W G R W G B) Nil))))
((:::) ((:::) (Cube G R B B W G) ((:::) (Cube W W R G B R)

((:::) (Cube R B G W R R) ((:::) (Cube B G W R G W ) Nil))))
((:::) ((:::) (Cube G R W B B G) ((:::) (Cube R W B G R W )

((:::) (Cube R B R W G R) ((:::) (Cube W G G R W B) Nil))))
((:::) ((:::) (Cube G W R B B G) ((:::) (Cube W B W R G R)

((:::) (Cube R R B G W R) ((:::) (Cube B G G W R W ) Nil))))
((:::) ((:::) (Cube G B R W B G) ((:::) (Cube R R W B G W )

((:::) (Cube R G B R W R) ((:::) (Cube W W G G R B) Nil))))
((:::) ((:::) (Cube G B W R B G) ((:::) (Cube W G B W R R)

((:::) (Cube R W R B G R) ((:::) (Cube B R G G W W ) Nil))))
Nil)))))))

Changing the order of backtracking steps changes the order of solutions. For
comparison, here is the solution generated by the pure Haskell version:

[["GBWRBG","WGBWRR","RWRBGR","BRGGWW"],

["GBRWBG","RRWBGW","RGBRWR","WWGGRB"],

["GWRBBG","WBWRGR","RRBGWR","BGGWRW"],

["GBBRWG","RGRWBW","RWGBRR","WRWGGB"],

["GRBBWG","WWRGBR","RBGWRR","BGWRGW"],

["GWBBRG","RBGRWW","RRWGBR","WGRWGB"],

["GBBWRG","WRGBWR","RGWRBR","BWRGGW"],

["GRWBBG","RWBGRW","RBRWGR","WGGRWB"]]
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Using types in Haskell

Now that we’ve seen how to use the Haskell Type System to solve a puzzle, let’s
review what it was actually designed for: ensuring that your programs make sense.
The syntax of the Haskell Type System lets you tell the compiler what your pro-
gram must or must not do, while also giving you enough flexibility to implement
useful shared and extensible interfaces.

Let’s review the features of the Haskell Type System from a Haskell program-
ming perspective.

Keywords

The most straightforward way to define your own types is with the keyword data.
You can use this to define simple types or to introduce structured records.

Type aliases are a handy form of abbreviation; for example the Prelude provides
type Rational = Ratio Integer , to make code that manipulates rational numbers
easier to read and write; under the hood, code that works with Rationals is actually
dealing with the Ratio Integer type. This is different from newtype which declares
an entirely new type that cannot be used in the same contexts.

Parameterized type-classes, introduced by the keyword class, are used to pro-
vide common interfaces for existing types. These interfaces are composed of meth-
ods, which may be functions or constant values. An instance of a type-class simply
provides an implementation of the class methods. You can also provide default
methods in a class declaration, which are used unless overridden in an instance.

Haskell98 features

Parameterized types are used to wrap types in general interfaces. You use this
technique when you want to ensure that you can’t accidentally use two variants
of a parameterized type in the same call; the Haskell Type System ensures that
they are incompatible. You can also use this to create tainted versions of existing
types, in order to quarantine data that has come from untrusted sources.

Type constraints, introduced by ⇒, are often used to provide sensible pre-
conditions. For example, the Haskell Prelude declares the type-class Real with
the constraint class (Num a,Ord a) ⇒ Real a, which expresses that you can only
try to implement the interface for Real for types which are numeric and have
an ordering; the Haskell Type System first ensures that that you have already
implemented Num and Ord .

When reading Haskell code, you will notice that type constraints can occur in
data and function definitions, not just in class instances.
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Type constraints can also be used more creatively to encode post-conditions,
if these conditions are encoded into the function types. For example, Kyselyov’s
Dependently Typed Append [2], implements a list append with the assurance that
the length of the output list is the sum of the lengths of the input list.

Extensions

Some of the language features used in this tutorial are not part of the Haskell98
specification, but are widely supported by Haskell compilers. When building with
GHC, these extensions can be enabled with the options -fglasgow-exts [3].

The simplest of these extensions is the use of data types with no constructors,
such as

data Red
data Blue

As these types can only contain the value ⊥, they are not much use on their own.
However, they can be used to construct other, more complex types, and can be
used as phantom types [4].

Multi-parameter type-classes allow you to specify an interface which can behave
differently for each combination of “input” types. This is usually used together
with functional dependencies [5], which make it easier for the type-checker to
infer type relationships, and make the code easier to read. We enable the GHC
option -fundecidable-instances [3] to allow general recursion at the type-level.

GHC allows empty class declarations (with a warning), so the definitions in this
tutorial which specify where something = ⊥ are actually unnecessary. However,
we left them in in order to retain some semblance of connection to conventional
Haskell programming.

Conclusion

We have seen how to use the Haskell Type System as a programming language to
solve a given problem. Of course, its real purpose is not to solve problems directly,
but to express constraints on the behaviour of a system in Haskell. The type level
features we have seen allow us to express the pre- and post-conditions of functions.
By expressing these constraints in the type system, the compiler statically verifies
that the produced code operates as required, without the need for run-time checks.

We reiterate that familiarity with the syntax of the Haskell Type System is a
prerequisite for general Haskell programming. With a solid understanding of type
and type-class parameterization, type constraints and dependencies, you should be
well on your way to understanding the interfaces of interesting and useful types.
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This tutorial introduced the most widely used type-level features in general
Haskell programming, extending Haskell98 with multi-parameter type-classes and
undecidable instances. If you wish to go further with type-level programming
there are many interesting extensions to the Haskell Type System [3], and more
advanced type systems research explores topics like program verification and proof
carrying code. [6, 7].

Please enjoy hacking in the Haskell Type System, and wield it wisely in your
program designs.
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