
SAFE HASKELL
David Terei

David Mazières
Simon Marlow

Simon Peyton Jones

Stanford University Microsoft Research

MOTIVATION

Haskell is a great language for building secure systems in:

•Information flow control

•Capabilities

•Computations on encrypted data

But all this work can’t secure untrusted code in the real world!

MOTIVATION

Running Example:

Build in Haskell a website that can run untrusted third-party
plugins:

•Users can upload plugins in source form

•Any user can install an uploaded plugin against their account

MOTIVATION

How?

•Carefully craft plugin interface to restrict functions that a
plugin can execute

•e.g Only pure functions

•Need type safety guarantees for this to work

f :: a -> a

MOTIVATION

f :: a -> a

f a = unsafePerformIO $ do
 _ <- send_credit_card
 return a

MOTIVATION

SOLUTION?

SOLUTION?

Safe Haskell !

SAFE HASKELL

• Safe subset of Haskell that provides ‘enough’ guarantees

• A safe import extension

• A definition of trust that applies to modules and packages

SAFE LANGUAGE
•Safe language (enabled with -XSafe) provides:

•Type safety

•Guaranteed module boundaries

•Semantic consistency

•These are the properties that we usually think about Haskell
having

•Safe language is a subset of Haskell

-XSAFE RESTRICTIONS
• FFI imports must be in the IO monad

• Can’t define RULES

•No Template Haskell

•No GeneralizedNewtypeDeriving

•No hand crafted instances of Data.Typeable, only derived

•Overlapping instances can only overlap instances defined in
the same module

• Can only import other ‘trusted’ modules

REVISITING THE EXAMPLE

•So for untrusted plugins, compile with -XSafe

•Can craft a plugin interface that uses types carefully to control
functions a plugin can execute

Done?

TURTLES ALL THE WAY DOWN

• -XSafe compiled modules can only import trusted modules

• So far -XSafe is only way to create trusted modules

•What about modules like Data.ByteString?

•Want to allow untrusted code to use Data.ByteString

• Unsafe internals but safe API

-XTRUSTWORTHY

Allows a module author to declare:

‘While module M may use unsafe functions internally, it only
exposes a safe API’

-XTRUSTWORTHY

•No restrictions on Haskell language

•Marks a module as trusted though

•Module author should assure that type safety can’t be violated
by importing their module

• Enables a small extension called safe imports

WHAT IS TRUST?

•What determines if a module is considered ‘trusted’?

• -XSafe compiled modules

•What about -XTrustworthy modules?

WHAT IS TRUST?
• -XTrustworthy allows a module author to mark any module as

potentially ‘trusted’

• Very easy to abuse

• So we require that the client (person running the compiler) assert
that they trust the module author by stating they trust the package

• For example:

• Don Stewart marks Data.Bytestring as Trustworthy

• Untrusted plugin author imports and uses Data.Bytestring

• Website administrator marks the bytestring package as trusted

WHAT IS TRUST?

• For -XSafe:

• trust provided by compiler

• For -XTrustworthy:

• trust of module stated by module author

• trust of module author provided by client by trusting the
package the module resides in

TRUST IS TRANSITIVE
 {-# LANGUAGE Safe #-}

 module A
 ...

 {-# LANGUAGE Trustworthy #-}
 module B
 ...

Package P

•For A to be trusted package
P must be trusted
•An -XSafe module may bring

in a package trust requirement

PACKAGE TRUST

• ghc-pkg trust <pkg>

• ghc-pkg distrust <pkg>

• ghc -trust <pkg> ...

• ghc -distrust <pkg> ...

• ghc -distrust-all-packages ...

SAFE IMPORTS

•One extension to the Haskell language:

import safe M

•Allows module author to specify that M must be trusted for
the import to succeed

•Under -XSafe all imports are safe imports (keyword implicit)

•Under -XTrustworthy the module author can choose

PROBLEMS WITH 7.2

• Current description is of Safe Haskell in 7.2

• Issue with operation of package trust

• Causes Safe Haskell to be invasive, infect the world!

BUILD ERRORS

“I'm running into a lot of issues like the following:

libraries/hoopl/src/Compiler/Hoopl/Collections.hs:14:1:

 base:Data.List can't be safely imported! The package (base)
the module resides in isn't trusted.”

PACKAGE TRUST REIFIED

• In 7.4, we won’t require that the package a Trustworthy
module resides in be trusted for the compilation to succeed

• -XTrustworthy modules will simply be trusted by default

•New -fpackage-trust flag to enable old behavior of 7.2

• This flag should always be used if you are compiling
untrusted code

SAFE INFERENCE

Unreasonable to expect the Haskell world to all start putting
explicit -XSafe and -XTrustworthy pragmas in their files.

So in 7.4:

•Safe status of a module will be inferred

•New -XUnsafe flag to explicitly mark a module as unsafe
so that it can’t be imported by untrusted code

RUNNING EXAMPLE
{-# LANGUAGE Unsafe #-}
module RIO.Unsafe (RIO(..)) where

newtype RIO a = UnsafeRIO { runRIO :: IO a }
instance Monad RIO where
 return = UnsafeRIO . return
 (UnsafeRIO m) >>= k = UnsafeRIO $ m >>= runRIO . k

{-# LANGUAGE Trustworthy #-}
module RIO.FileAccess (rioReadFile, rioWriteFile) where
...
pathOK f = {- Implement some policy -}

rioReadFile :: FilePath -> RIO String
rioReadFile f = UnsafeRIO $ do
 ok <- pathOK f
 if ok then readFile f else return “”

rioWriteFile :: FilePath -> String -> RIO ()
rioWriteFile f s = ...

RUNNING EXAMPLE
{-# LANGUAGE Trustworthy #-}

module RIO (RIO() , runRIO, rioReadFile, rioWriteFile) where

import RIO.Unsafe

import safe RIO.FileAccess

{-# LANGUAGE Safe #-}

module UntrustedPlugin (runPlugin) where

import RIO

runPlugin :: RIO ()

runPlugin = ...

SUMMARY
• New language flags: -XSafe, -XTrustworthy, -XUnsafe

• New option flag: -fpackage-trust (7.4)

• Safe status of a module will be inferred (7.4)

Trust your types!

FUTURE WORK
• Prove safety guarantees

• Establish clearer definition of safe and what guarantees
trustworthy modules should provide

• Machine checking possible here?

• Do a retake on Safe language but by starting with a small,
proven correct core and expanding out.

• Inclusion in the Safe language could be used as a quality bar
for new Haskell extensions.

• Require formal semantics and proofs

SAFE HASKELL
In GHC 7.2

Please try out and provide feedback

http://www.scs.stanford.edu/~davidt/safehaskell.html

http://www.scs.stanford.edu/~davidt/safehaskell.html
http://www.scs.stanford.edu/~davidt/safehaskell.html

