Weaving Source Code into ThreadScope

Peter Wortmann
scpmw@leeds.ac.uk

University of Leeds
Visualization and Virtual Reality Group

sponsorship by
Microsoft Research

Haskell Implementors” Workshop 2011

Microsoft’ B

Resea rc h UNIVERSITY OF LEEII;S

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp' 2011 1/18

ThreadScope n

What this will be about UNIVERSITY OF LEEDS

ThreadScope Work-Flow

For reference:

app.hs
v Event-Log
GHC app.hs -threaded -eventlog Trace of the GHC run time
Y system.
app[.exe] | +RTS-Is-RTS Extensible to carry other data as
Y required.

app.eventlog

¥ ThreadScope
ThreadScope L . .
The principal visualisation tool

[—

for event-log traces

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp' 2011 2/18

The Problem

What is happening?

fid

il
UNIVERSITY OF LEEDS

= Main.eventlog - Threadscope

[SICIE)

Fle View Help
o & » | @

Timeline

Activity

HEC 0

HEC 1

HEC 2

HEC 3

a

Main.eventlog (2338206 events, 23.285s)

Speedup low for 4 cores. ..

Peter Wortmann (Uni Leeds)

Weaving Source Code into ThreadScope

What is the reason?

Hasklmp' 2011 3 /18

Back to the Source Code N

Getting warmer. . . UNIVERSITY OF LEEDS

= Main.eventlog - ThreadScope [2)E)x]

Fle View Help

e @& =

Timeline

Activity

(I

(<] m B

Events | Source

% |Name Core &)
28.0 (Misc)

Main / safe main = do
In] <- fmap (fmap read) getArgs =
print (nqueens n

-~ version of N-queens originally from nofib/imaginary/queens, parallelised
-~ by Simon Marlow 83/2010.

21.6 (Haskell)
7.0 Main /safe safe

nqueens :: Int -> Int 3
nqueens nq = length {pargen ng & [1)

50 Main/gen gol
48 Main/safe sat s2mu
2.8 Main/safe sat s2mt safe :: Int -> Int -> [Int] -> B

21 Main/safe sat s2mk
18 Main/gen go

16 Main/gen sats2mC gen :: Int -> [[Int]] -> [[Int]]

gen nq bs = [(q:b) | b <-bs, g <- [1..nq], safe q 1 b] S
Main.eventlog (2338206 events, 23.285s)

Main worker only active 23% of the time! Not good.

ource Code into ThreadSco|

More details

Drilling into the core

UNIVERSITY OF LEEDS

= Main.eventlog - Threadscope

[SICIE)

Fle View Help

e @& =

Timeline

Activity

(I

@ m

Events | Source

\ (x2 sz Int) (d1
case dsl of _ {
[1 => True;

11
case x2 of wilds { I# x3 -

case ql of _ { I# y2 ->
case /=# x3 y2 of _ {
False -> False;
True ->
case dl of _ { I# y3 ->
case +# y2 y3 of sat_samp { __DEFAULT ->
case /=# x3 sat_s2mp of _
False -> False;

% | Name : Int) (dsl :: [Int]) ->

28.0 (Misc)

Core

Main / safe
21.6 (Haskell)
7.0 Main/safe safe
50 Main/gen gol
48 Main/safe sat s2mu
2.8 Main/safe sat s2mt
21 Main/safe sat s2mk

19 Main/gen go True ->
16 Main/gen sats2mcC case # y2 y3 of sat_s2mr { _DEFAULT ->
. case /=4 x3 sat s2mr of

(=

Main.eventlog (2338206 events, 23.285s)

Okay, this should not happen.

ource Code into ThreadSco|

ter Wortmann

Optimization Results N

Much better! UNIVERSITY OF LEEDS

= Main.eventlog - ThreadScope [2)E)x]
Fle View Help
I & 5| L]
Timeline
1s 25 35 4s 55 6s 7s |
T T : T T : : — |12
Activity =

[+] [-- version of N-queens originally from nofib/imaginary/queens, parallelised
-- by Simon Marlow 83/2010.

Main / safe Swsafel
23.3 (Haskell) main = do

10.9 Main/gen gol [n] <- fmap (fmap read) getArgs L
8 gen 9 print (nqueens n
10.8 Main/safe $wsafe
46 (Misc) nqueens :: Int -> Int L
= length [
18 Main/gen go nqueens nq = length (pargen nq 0 [1)
0.8 Main/gen sat_s2mV safe :: Int -> Int -> [Int] -> Bool
0.4 Main/gen sat s2mw
0.1 Main/gen sat s2mx
0.1 Main/gen sat_s2mY gen :: Int -> [[Int]] -> [[Int]]
- gennqbs-[(qbl | b<-bs, qg< [l..nq], safeq1b] [+

Main.eventlog (157097 events, 7.170s}

A simple strictness annotation gives 3 fold speed-up.

ter Wortmann ni Leeds) Weaving Source Code into ThreadSco|

Design Trade-Offs n

UNIVERSITY OF LEEDS

Cannot have everything at once

Timestamped source-level profiling data.

. written out:

Accurate profiling Source Code Hints

@ Reliable performance data @ Helpful cost allocation
o Reflect original program well @ User friendly
= Allow for optimisations! (automatic in a useful way)
Good Time Resolution Future Proof
Data for every point in time Multi-Core, cache misses. ..

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp' 2011 7/ 18

Profiling N

Throwing data away done right UNIVERSITY OF LEEDS

Main Problem

Program execution is fast! = Lots of data, cannot possibly retain in full

Sampling

L%ﬂl% | L [%IIv IH |

@ Write status info into known memory location

@ Periodically look up and save a sample

Distribution of samples expected reasonably close to “true” distribution

Bonus: Variable periods allow special sampling (e.g. cache misses)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp' 2011 8 /18

Profiling N

Throwing data away done right

UNIVERSITY OF LEEDS

Main Problem

Program execution is fast! = Lots of data, cannot possibly retain in full

Sampling

I\IH\I\IH%IHH Hl
|

@ Write status info into known memory location

@ Periodically look up and save a sample

Distribution of samples expected reasonably close to “true” distribution

Bonus: Variable periods allow special sampling (e.g. cache misses)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp' 2011 8 /18

Hardware Performance Counters N

Everything truly great must be unportable UNIVERSITY OF LEEDS

Hardware Support

Modern CPUs support Hardware Performance Counters:

@ Special registers count events/statistics (cycles, branch misses. ..)

@ Programmable so program gets interrupted on threshold

Properties:
@ Very reliable performance data (“outsider” perspective)
o Fast & flexible
Operation system support spotty, though:
Linux: PAPI & perf events!
Windows: (needs driver?)
Mac Os: (undocumented?)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011

Portable Alternatives N

This is for Microsoft Research, after all UNIVERSITY OF LEEDS

Plain Timers

Use a simple timer for sampling

@ Only by time — not what we want, strictly speaking

@ Again unportable below ~ 10ms?

@ Harder to get to thread data

Instrument

| \

Prefix all generated code chunks to sum up status changes in table

@ Has access to thread-local state (allocations)!

o Relatively slow: ~ 60% slowdown for cycle counter

N

Bottom Line: Support hardware counters and instrumentation.

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011

Gather what? N

UNIVERSITY OF LEEDS

Making it interesting

Sampling Question

What source code executed here?

1 Cost Centres [SansomJones1997]

@ Instrument program on functional level

@ Restrict code transformations

= Good source attribution, concerning subtly different program

2 Qur approach

| A

@ Minimal or no instrumentation — just look at instruction pointer!

o Follow code transformations

= Worse source attribution on fully optimised program

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 11 / 18

fid

Following the Source UNIVERSITY OF LEEDS

GHC stages we must make transparent

© Haskell program app.hs
@ Functional representation T Optimize
(functions, lets, cases...) *
© Imperative representation - .
(procedures, blocks, instructions...) *
© Low-level assembly el
LLVML...
@ Linked executable Y
app[.exe]

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 12 / 18

Dealing with Core Optimization N

. from functional to better functional UNIVERSITY OF LEEDS

Put annotations into expression graph, update for optimisations :

main =

P Helloworld.hs:(5:0-5:27)

“Hello World!”

o Code gets separated — duplicate annotation
e Code gets (partially) removed — remove/move annotation
@ Code gets integrated — allow overlap?

!Not quite the same as [SansomJones1997], [GillRunciman2007]
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 13 / 18

Dealing with Core Optimization

. from functional to better functional

ﬁ

UNIVERSITY OF LEEDS

Put annotations into expression graph, update for optimisations :
main =
+ P Helloworld.hs:(5:0-5:27)
[leta = “Hello World!’ﬂ
o Code gets separated — duplicate annotation
e Code gets (partially) removed — remove/move annotation
@ Code gets integrated — allow overlap?

!Not quite the same as [SansomJones1997], [GillRunciman2007]
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011

13 / 18

Dealing with Core Optimization

. from functional to better functional

Put annotations into expression graph, update for optimisations :
main = a=
\

| -
* = Helloworld.hs:(5:0-5:27)

[print] “Hello WorId!”]

ﬁ

UNIVERSITY OF LEEDS

o Code gets separated — duplicate annotation
e Code gets (partially) removed — remove/move annotation
@ Code gets integrated — allow overlap?

!Not quite the same as [SansomJones1997], [GillRunciman2007]
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011

13 / 18

Dealing with Code Generation N

UNIVERSITY OF LEEDS

. from functional to imperative

Generated closure code is imperative-style procedures & blocks

main = a=

|
* iHelloWorld.hs:(5:0—5:27)

[print] “Hello World!”]

v

CmmProc CmmProc
A B

v

Cmm transformations only touch blocks = can separate data (retain Core!)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 14 / 18

Dealing with Code Generation N

. from functional to imperative UNIVERSITY OF LEEDS

Generated closure code is imperative-style procedures & blocks

main = a=
: P> elloworld. hs: (5:0-5:27
_>e oWorld.hs:(5:0-5:27)
[print] “Hello World!”]
[[
CmmProc CmmProc A - { HelloWorld.hs:(5:0-5:27)
A B , <main = print a> }
B - { HelloWorld.hs:(5:0-5:27)
, <a = “Hello World”> }

v

Cmm transformations only touch blocks = can separate data (retain Core!)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 14 / 18

Dealing with Linking N

Leaving GHC UNIVERSITY OF LEEDS

CmmProc CmmProc
A B

A - { HelloWorld.hs:(5:0-5:27)
, <main = print a> }

B - { HelloWorld.hs:(5:0-5:27)
, <a = “Hello World”> }

———
P ——

Execut-
able

DWARF+ =

Linking is done by external programs (LLVM & GCC). Split debug data:
@ Use C-style DWARF format where possible (will be kept consistent!)

@ Put rest into binary to be prepended to event-log

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 15 / 18

Wrapping up

Tying everything together

ﬁ

UNIVERSITY OF LEEDS

The New Workflow

app.hs

v

GHC

v

app[.exe]

v

app.eventlog

Source
ThreadScope

Paie-sueniz Tl hsedlE s

16 / 18

Peter Wortmann (Uni Leeds)

Weaving Source Code into ThreadScope

Hasklmp' 2011

ThreadScope Visualization
What to make of the data

Weighting samples

What samples to use at point?
= Weight those found nearby

ﬁ

UNIVERSITY OF LEEDS

Many procedures per function

Code often very splintered up
= Subsume shared names/cores!

[|nqueens :: Int -> Int

5.0 Mai 1
ain/gen go nqueens nq = length (pargen ng 0 [1)

4.8 Mainsafe sats2mu
2.8 Main/safe sat s2mt safe :: Int -> Int -> [Int] -> Bool

safe x d [1 = True
2.1 Main/safe sat_s2mk e il (q e AT e T

Many functions per procedure

Inlining distributes responsibility
= Mark all or use heuristic

for_each xs init op = foldl' op init xs
{-# INLINE for each #-}

join tree :: [Int] -> (Int -> [Int]) -> Graph
join tree vertices adjacent
-~ For each vertex v in the dataset ..

Peter Wortmann (Uni Leeds)

Weaving Source Code into ThreadScope

Hasklmp’ 2011 17 / 18

The End N

Other people want to speak as well! UNIVERSITY OF LEEDS

Project Status — Future Work:

Profiling
Works well, a bit restricted on Only mechanical work remains
il frme (support native codegen!)

Code Association Visualization

Roll CCs, HPC and our approach A lot of data available,
into a consistent whole analysis still relatively crude.

Thanks for listening ... Discussion?

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 18 / 18

Another Optimization Problem N

True story! UNIVERSITY OF LEEDS

» graphl.eventlog - ThreadScope DEx]
File View Help
[[+

& & 9 @ 0
Timeline

055 1s ks 2s 255 3s 355 4s 4.55 55 m

R RN R R R R R
Activity |
v
& W D]
Events | Source
% Name Core repulse force a b = (charge k / (dist a b)"2) “times’ normal (diff (]
44.0 (Haskell) step :: Forces -> Positions -> Positions
34.8 (Misc) step fl p = IM.mapWithKey stepl p ‘using’ evalTraversable rseq "dot
|| where
7 Main / step/stepljcalc force sat sdN| Stepl u wp = (up “plus’)
2.8 Main Swfl where
2.8 Main SwSj max 20 § sumV § may
2.8 Main/norm Swrepu
1.8 Main / dist sat_s4D ||
N steps :: Forces -» Positions -> [Positions]

08 Main/ dist SALSE ||| Cteps T p=p ¢ (steps T § step T p)
0.7 Main / dist sat_s4E =
& n [DR i)
graphl.eventlog (1054308 events, 9.3595)

Uh, only 6.7% activity in worker!
Hm, “$wf1” and “$w$j" look suspicious. . .

ource Code into ThreadSco| asklmp’ 2011

Further Investigation N

Strange enough that | first suspected a bug. . . UNIVERSITY OF LEEDS

ES graph1.eventlog - ThreadScope Q@)
Fle View Help
(=}
| & = a0
Timeline
0.5s5 1s 1ps 2s 2.55 3s 3.5s 4s 4.5s 5s v |
[EE R e R R R R R R R
Activity | |
a " | [
Events | Source
% Name Core |[2][\ (ww :: Float#) (wl A
let {_sws i n
440 (Haskeld of 1
34.8 (Misc) S#i->
6.7 Main / step/stepl/calc_force sat_saN| COEFAULT > case Ssj of { F¥ wi2 <> wi2 1
Main Swil 7>
Main swsj case quotInteger wl W17 of sat sdCA { _ DEFAULT ->
case timesFloat# ww ww of sat_s4CB { _ DEFAULT ->
Main / norm $wrepu $wfl sat_sdCB sat_s4CA
Main / dist sat_s4D) 1y
Main / dist sat_s4E IR
Main / dist sat_s4E| case {_pkg_ccall 6C integer-gmp integer_cmm cmpIntegerIntzh
[Dilal [D]
graphl.eventlog (1054308 events, 9.359s)

Integer arithmetic, of all things?
The program is only dealing with Floats!

Peter Wortmann urce Code into ThreadSco 20 /

The Unexpected Villian N

Small operator, large effect UNIVERSITY OF LEEDS

ES graph1.eventlog - ThreadScope Q@)
Fle View Help
Timeline
0.5s 1s 1Ps 2s 2.5s 3s 3.5s as 4.5s 5s IF |
[T T e T T T
Activity |
a " [
Events | Source
% |Name core |[] oy
44.0 (Haskel) charge k = 2000 :: Float
34.8 (Misc) - Coulomb's Law: F=kqlq2/
6.7 Main/ step/stepljcalc_force sat_saN repulse force :: Vector -> \le(twr -> \le(tor
2.9 Main Swil b ~2
2.9 Main SwSj step :: Forces -> Positions -> Positions
Step 1 p = TH.maprithKey stepl p using’ evalTraversable rseq “dot
where
18 Main/ dist sat_sdD) Tepl u up = (up “plus’)
0.8 Main/dist sat_sdE where
0.7 Main /dist sat s4E = maxN 20 § sunv $ map calc force (fL IM.! u)
N - rale fnrce (Snrina) = adna farca un fn TH 1)
@ w I) G I I [
graphl.eventlog (1054308 events, 9.350s)

Looking at the call site: Exponentiation was to blame!
(2 :: Integer by defaulting, (") implemented as loop, see #5237)

Peter Wortmann i i urce Code into ThreadSc: Hasklmp' 2011 21 /18

http://hackage.haskell.org/trac/ghc/ticket/5237

Optimization Result

Happy End

UNIVERSITY OF LEEDS

= graphl.eventlog - Threadscope

[SICIE)

Fle View Help

e @& =

Timeline

.55 1s 1.5s 2s

2.5s m

Activity

@ m

| Events | Source

% Name Core sumV :: [Vector] -> Vector
sumv = foldl' plus (Vec @ @)

49.5 Main / step/stepl/calc_force sat s4CO
38.4 (Haskell)
10.2 (Misc)

18 Main /sumV
0.0 Main/ plus

times :: Float -» Vector -» Vector
times i (Vec x y) = vec (i * x) (i *y)

Swigo
sat_s4BT

norm :: Vector -> Float
norm {Vec x y) = sqrt (x * x + y * y)

normal :: Vector -> Vector
normal v = (1 / norm v) ‘times' v

maxN :: Float -> Vector -> Vector
mavii 1w = if n =1 then v alea (1 / nl ‘times’

[

a m

graphl.eventlog (235177 events, 2.777s)

Final speedup: Over 3 fold!

urce Code into ThreadSco

asklmp’ 2011 2/

This page was intentionally left blank.

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope Hasklmp’ 2011 18 / 18

	Introduction
	Profiling
	Source-Code Mapping
	Visualization
	The End
	Appendix
	Bonus

