
Weaving Source Code into ThreadScope

Peter Wortmann
scpmw@leeds.ac.uk

University of Leeds
Visualization and Virtual Reality Group

sponsorship by
Microsoft Research

Haskell Implementors’ Workshop 2011

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 1 / 18

ThreadScope
What this will be about

ThreadScope Work-Flow

app.hs

GHC

app[.exe]

app.eventlog

app.hs -threaded -eventlog

+RTS -ls -RTS

ThreadScope

For reference:

Event-Log

Trace of the GHC run time
system.
Extensible to carry other data as
required.

ThreadScope

The principal visualisation tool
for event-log traces

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 2 / 18

The Problem
What is happening?

Speedup low for 4 cores. . . What is the reason?

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 3 / 18

Back to the Source Code
Getting warmer. . .

Main worker only active 23% of the time! Not good.

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 4 / 18

More details
Drilling into the core

Okay, this should not happen.

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 5 / 18

Optimization Results
Much better!

A simple strictness annotation gives 3 fold speed-up.

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 6 / 18

Design Trade-Offs
Cannot have everything at once

The Goal

Timestamped source-level profiling data.

... written out:

Accurate profiling

Reliable performance data
Reflect original program well
⇒ Allow for optimisations!

Good Time Resolution

Data for every point in time

Source Code Hints

Helpful cost allocation
User friendly
(automatic in a useful way)

Future Proof

Multi-Core, cache misses. . .

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 7 / 18

Profiling
Throwing data away done right

Main Problem

Program execution is fast! ⇒ Lots of data, cannot possibly retain in full

Sampling

1 Write status info into known memory location
2 Periodically look up and save a sample

Distribution of samples expected reasonably close to “true” distribution

Bonus: Variable periods allow special sampling (e.g. cache misses)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 8 / 18

Profiling
Throwing data away done right

Main Problem

Program execution is fast! ⇒ Lots of data, cannot possibly retain in full

Sampling

1 Write status info into known memory location
2 Periodically look up and save a sample

Distribution of samples expected reasonably close to “true” distribution

Bonus: Variable periods allow special sampling (e.g. cache misses)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 8 / 18

Hardware Performance Counters
Everything truly great must be unportable

Hardware Support

Modern CPUs support Hardware Performance Counters:

Special registers count events/statistics (cycles, branch misses. . .)
Programmable so program gets interrupted on threshold

Properties:

Very reliable performance data (“outsider” perspective)
Fast & flexible

Operation system support spotty, though:

Linux: PAPI & perf_events!
Windows: (needs driver?)
Mac Os: (undocumented?)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 9 / 18

Portable Alternatives
This is for Microsoft Research, after all

Plain Timers

Use a simple timer for sampling

Only by time — not what we want, strictly speaking
Again unportable below ∼ 10ms?
Harder to get to thread data

Instrument

Prefix all generated code chunks to sum up status changes in table

Has access to thread-local state (allocations)!
Relatively slow: ∼ 60% slowdown for cycle counter

Bottom Line: Support hardware counters and instrumentation.

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 10 / 18

Gather what?
Making it interesting

Sampling Question

What source code executed here?

1 Cost Centres [SansomJones1997]

Instrument program on functional level
Restrict code transformations

⇒ Good source attribution, concerning subtly different program

2 Our approach

Minimal or no instrumentation – just look at instruction pointer!
Follow code transformations

⇒ Worse source attribution on fully optimised program

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 11 / 18

Following the Source

GHC stages we must make transparent

1 Haskell program

2 Functional representation
(functions, lets, cases...)

3 Imperative representation
(procedures, blocks, instructions...)

4 Low-level assembly

5 Linked executable

app.hs

Core

Cmm

Simple functional representation:
(functions, lets, cases, ...)

Imperative representation:
(procedures, blocks, instructions)

Original program

Optimize

Optimize

Assembler/
LLVM/...

GHC output
(assembly language)

app[.exe]Final result
(linked executable)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 12 / 18

Dealing with Core Optimization
. . . from functional to better functional

Put annotations into expression graph, update for optimisations 1:

main =

print

“Hello World!”

HelloWorld.hs:(5:0-5:27)

Code gets separated
Code gets (partially) removed
Code gets integrated

→ duplicate annotation
→ remove/move annotation
→ allow overlap?

1Not quite the same as [SansomJones1997], [GillRunciman2007]
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 13 / 18

Dealing with Core Optimization
. . . from functional to better functional

Put annotations into expression graph, update for optimisations 1:

main =

print

let a = “Hello World!”

a

HelloWorld.hs:(5:0-5:27)

Code gets separated
Code gets (partially) removed
Code gets integrated

→ duplicate annotation
→ remove/move annotation
→ allow overlap?

1Not quite the same as [SansomJones1997], [GillRunciman2007]
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 13 / 18

Dealing with Core Optimization
. . . from functional to better functional

Put annotations into expression graph, update for optimisations 1:

main =

print

HelloWorld.hs:(5:0-5:27)

“Hello World!”

a

a =

Code gets separated
Code gets (partially) removed
Code gets integrated

→ duplicate annotation
→ remove/move annotation
→ allow overlap?

1Not quite the same as [SansomJones1997], [GillRunciman2007]
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 13 / 18

Dealing with Code Generation
. . . from functional to imperative

Generated closure code is imperative-style procedures & blocks

main =

print

HelloWorld.hs:(5:0-5:27)

“Hello World!”

a

a =

CmmProc
A

CmmProc
B

Cmm transformations only touch blocks ⇒ can separate data (retain Core!)
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 14 / 18

Dealing with Code Generation
. . . from functional to imperative

Generated closure code is imperative-style procedures & blocks

main =

print

HelloWorld.hs:(5:0-5:27)

“Hello World!”

a

a =

CmmProc
A

CmmProc
B

A → { HelloWorld.hs:(5:0-5:27)
, <main = print a> }

B → { HelloWorld.hs:(5:0-5:27)
, <a = “Hello World”> }

Cmm transformations only touch blocks ⇒ can separate data (retain Core!)
Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 14 / 18

Dealing with Linking
Leaving GHC

CmmProc
A

CmmProc
B

Execut-
able

A → { HelloWorld.hs:(5:0-5:27)
, <main = print a> }

B → { HelloWorld.hs:(5:0-5:27)
, <a = “Hello World”> }

DWARF+

Linking is done by external programs (LLVM & GCC). Split debug data:

Use C-style DWARF format where possible (will be kept consistent!)
Put rest into binary to be prepended to event-log

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 15 / 18

Wrapping up
Tying everything together

The New Workflow

app.hs

GHC

app[.exe]

app.eventlog

ThreadScope
Source

DWARF

Events,
Map

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 16 / 18

ThreadScope Visualization
What to make of the data

Weighting samples

What samples to use at point?
⇒ Weight those found nearby

Many procedures per function

Code often very splintered up
⇒ Subsume shared names/cores!

Many functions per procedure

Inlining distributes responsibility
⇒ Mark all or use heuristic

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 17 / 18

The End
Other people want to speak as well!

Project Status — Future Work:

Profiling

Works well, a bit restricted on
non-Linux

Code Association

Roll CCs, HPC and our approach
into a consistent whole

Infrastructure

Only mechanical work remains
(support native codegen!)

Visualization

A lot of data available,
analysis still relatively crude.

Thanks for listening ... Discussion?

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 18 / 18

Another Optimization Problem
True story!

Uh, only 6.7% activity in worker!
Hm, “$wf1” and “$w$j” look suspicious. . .

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 19 / 18

Further Investigation
Strange enough that I first suspected a bug. . .

Integer arithmetic, of all things?
The program is only dealing with Floats!

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 20 / 18

The Unexpected Villian
Small operator, large effect

Looking at the call site: Exponentiation was to blame!
(2 :: Integer by defaulting, (ˆ) implemented as loop, see #5237)

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 21 / 18

http://hackage.haskell.org/trac/ghc/ticket/5237

Optimization Result
Happy End

Final speedup: Over 3 fold!

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 22 / 18

This page was intentionally left blank.

Peter Wortmann (Uni Leeds) Weaving Source Code into ThreadScope HaskImp’ 2011 18 / 18

	Introduction
	Profiling
	Source-Code Mapping
	Visualization
	The End
	Appendix
	Bonus

