
Adaptive DFA – the development of adaptable methods

Dan Popa
Univ. "Vasile Alecsandri", Calea Mǎrǎşeşti 157, Bacǎu, Romania

danvpopa@ub.ro, popavdan@yahoo.com

Abstract: This paper is a part of a study concerning the development of adaptable methods and their use in the field of Formal
Languages and Automata Theory. The author is introducing the Adaptive Determinist Finite Automata (ADFA) using

mathematics inspired by the use of the very high level functional language Haskell 98. The training method, the way of use,
examples and the history of the Adaptive Determinist Finite Automata together with the applications already built on that

concept are also presented.

1.Introduction and overview

 The long-term goals of this research were:
 To increase productivity and efficiency in a world where
the time is short and projects need to be flexible.
 To implement the idea from [Arm01]: “Do not shoot
balloons with cannons, shoot the fighter-planes with
thermal missiles!”, in software building methodology and
especially in language and interpreters building
methodology.
 To develop the theory of adaptive/adaptable languages,
tools and products. (specific goal)
 Five years ago, in [Pop 04] and [Pop 05] the Adaptive
DFA was described and presented. Checking the classic
references like [Aho07] (even the updated volumes),
leads us to the conclusion that ADFA are a different model
/ machine for languages recognition.
 Various implementations was made during last years
using Oberon-2, using C and C++ by the original author
and his students. [Bal 08], [Sme 09] .
 Now we are coming back with a mathematical point of
view concerning Adaptive DFA suggested by the use of
the very high level functional language Haskell [Pey 02].

2.Preliminaries

The mathematics of Adaptive DFA is here described using
a notation high related to Haskell.

Functions will be denoted by long names: f(x) will be
used together with, for ex: funct(x) and even funct x.
Multiple parameters functions will be written nor as
function (a, b) but as function a b , which is a common
practice for Haskell programmers.

The sets we use here will be, actually, ordered sets with
eventually duplicated elements (lists). They are written
using right parenthesis [].
Examples :
x= [1,4,5]
[x | x <- a , x >3]

 Every program is usually having some auxiliary
functions, so here they are ours:

 Intersection of two lists, using this notation

intersect a b =
 [c1 | c1 <- a, c2 <-b , c1 == c2]

 Adding spaces at the end of the string s is an other function we
needed:

addspace s = ' ':s++" "

Haskell programmers may note that it can be written as (not so
fast version):

addspace s = " "++s++" "

3.Classes of characters

 According to the paper [Pop 05] where Adaptive DFA was
mathematically presented for the first time, the characters
processed by an Adaptive DFA are, first of all classified in :
-Letters,
-Digits,
-Spaces etc.
The process is similarly with a part of the lexical analysis.

We have used a simple Haskell function to compute the class of
symbol, the classes being identified by characters:

-Letters, the 'l' class
-Digits, the 'c' class
-Spaces , the '_' class
-Others , the '?' class

clasa a =
 if (a >= 'a' && a <= 'z') ||
 (a >= 'A' && a <= 'Z')
 then 'l'
 else if (a >= '0' && a<= '9')
 then 'c'
 else if a == '\t' || a =='\n' || a ==' ' then '_'
 else '?'

-- 'l' = alphabetic, 'c' = digits, '_' = spaces

4.Preparing the words for storage

In our approach, classifying the characters from a new
word
means two successive processing: first of all adding
spaces around the word then classify the resulted string
character by character. What we get will be called a
“scheme” of a word. For example: “_ccc_” is a scheme
produced by a three digits number.
The process can be implemented as a Haskell function:

clasifica = (map clasa). addspace

Where:
-- map is the usual map of the functional languages which
applies a function to all the elements of a list. For example
: map f [x,y,z] = [f x, f y, f z]
-- 'dot' is the product of functions (reverse composition) as
it is defined in the standard library of the Haskell
language.

5.Simulating the storage in the matrix

 The original paper [Pop 05] had used a bi-dimensional
matrix. Here we are using an other data structure which in
fact simulate the storage in that rare matrix. Here we are
explaining the process of storage of the schemes in the
datastructure:
 For every triple (x,y,z) (x,y,z being classes of
successive symbols of the word) we will preserve the
schemes of those words in a list which is associated with
the triple, becoming the 4th element.
 This list which is associated with a triple can be easily
found by filtering the dictionary itself using a sort of
substring function:
 filter (substr (x,y,z)) dict

where the substring filter is defined by the next two
equations:

substr (x,y,z) (c1:c2:c3:t) =
 if c1==x && c2==y && c3==z
 then True
 else substr (x,y,z) (c2:c3:t)
substr (x,y,z) (c1:c2:[]) = False

How it works: if the sequence of classes “xyz” is found
somewhere in the scheme of a word, this fact triggers the
placement of that scheme in that list which is associated
with the triple.

6.The trained Adaptive DFA

So, he result which is produced by processing the whole
dictionary can be computed by the next function:

automat dict =
 [(x,y,z, filter (substr (x,y,z)) dict) | x <- n,

 y <- n ,
 z <- n]
 where
 n = "lc_" -- n = map clasificare "D2 "

-- Note: The dictionary which is used here should be the list of
schemes of the words serving as training examples.

7.Rebuilding examples from previous papers

Now, the adaptive DFA from [Popa05] which was trained to
accept numbers can be simply defined as:

a = automat ["_c_", "_cc_", "_ccc_"]

Or, using examples and the classification function:

a = automat [clasifica "0", clasifica "21", clasifica "196"]

Now, the adaptive DFA from [Popa05] can be computed by
simply asking Hugs or GHCi to produce an explicit value:

Here is the value:
[('l','l','l',[]),('l','l','c',[]),('l','l','_',[]),('l','c','l',[]),('l','c','c',[]),('l','c','_',
[]),('l','_','l',[]),('l','_','c',[]),('l','_','_',[]),('c','l','l',[]),('c','l','c',[]),
('c','l','_',[]),('c','c','l',[]),('c','c','c',["_ccc_"]),('c','c','_',
["_cc_","_ccc_"]),('c','_','l',[]),('c','_','c',[]),('c','_','_',[]),('_','l','l',[]),
('_','l','c',[]),('_','l','_',[]),('_','c','l',[]),('_','c','c',["_cc_","_ccc_"]),
('_','c','_',["_c_"]),('_','_','l',[]),('_','_','c',[]),('_','_','_',[])]

We may want to simplify the list, by ignoring the (x,y,z,[])
quadruples. A function which is able to eliminate such
quadruples is:

simplu a = [x | x <- a , lastp x /= []]
 where lastp (_,_,_,y)= y

By using this function, we are able to filter the important
quadruples:

Main> simplu a
[('c','c','c',["_ccc_"]),('c','c','_',["_cc_","_ccc_"]),('_','c','c',
["_cc_","_ccc_"]),('_','c','_',["_c_"])]

We will denote this simple form by: a' = simplu a
But we will not study it here.

8. Using a trained ADFA

 A scheme of a word being given, the analysis is
implemented by the folowing function:

analiza cuvant automat=
 [m | (x,y,z,m) <- automat , (x,y,z) `elem` triplete cuvant]

The paramethers are the scheme of the word and the
ADFA.
And, if you want to trace the computation you may use:

trace cuvant automat=
 [(x,y,z,m)| (x,y,z,m) <- automat ,
 (x,y,z) `elem` triplete cuvant]

...where the scheme of the input text is broken in “triples”
computed by the next function:

triplete ::[Char] -> [(Char,Char,Char)]
triplete (a:b:c:d) = (a,b,c) : (triplete (b:c:d))
triplete (b:c:_) = []

Note: in the previous paragraph, x `elem` m denotes the
test “if the element x belongs to the list m “ and is
provided as a standard Haskell operator.

9. Back to the analyzer's engine

Taking a closer look to the function implementing the
processing of the (scheme of a) word using an ADFA

analiza cuvant automat=
 [m | (x,y,z,m) <- automat
 , (x,y,z) `elem` triplete cuvant]

we can remark: The produced list may contains more sets
of “schemes”. If one “scheme” appears in all this sets ->
the word is accepted. See the next paragraph.

10. Accepting a word

Now we can define in which situations the word is
accepted. We are defining a sort of acceptance by
intersection, because
when the ADFA is processing a token, it can identify more
than one set of schemes partially matching that token. So
we have just compute the intersection:

acceptare cuvant automat
 = foldl intersect (head a) a
 where
 a = analiza cuvant automat

Remark: the above function can also be written as:
acceptare cuvant automat
 = foldl intersect (head a) (tail a)
 where
 a = analiza cuvant automat

11. Acceptance criteria

The intersection contains one or more schemes . This is the case
when the input is accepted. It means there exist one or more
schemes (and correspondingly there are some examples in the set
which was used for training) matching the given word (actually,
it's scheme!).

The intersection did not contain a common scheme, so it is the
empty list []. In this case the input is not accepted. None of the
words from the set which was used for training could provide a
whole set of “triples”.

12. The trained ADFA is working now !

Here are some words which are given to the automata defined
in the 7th paragraph. Below each one, there is the
corresponding answer of the trained system and a comment:

> acceptare (clasifica "2357543") a
 ["_ccc_"]
Interpretation: this is a number composed by three or more digits.

> acceptare (clasifica "23") a
["_cc_", "_ccc_"]
Interpretation: this is a number composed by two or three or
more digits.
> acceptare (clasifica "2") a
["_c_"]
Interpretation: this is a number composed by just one digit.

> acceptare (clasifica "r2d2") a
[]
Interpretation: The empty list [] being returned, this word is not
accepted. This is not a number in the sense of examples provided
during the training of the ADFA.

13. Advantages

Even with a good textbook in hand concerning the use of
Flex / Lex - a common scanner generator - actually the
main problem concerning scanner's production is to find a
person which know al least 3 “languages”: C, regular
expressions, Lex/Flex specifications language or format.

Working with ADFA, the problem is simply disappearing.
We do not need to know all that languages and we do not
need to specify how the DFA will be built. There is no
need to learn regular expressions or other formalism. All
we have to do is to train an ADFA using the examples we
need.

The code of the ADFA is just one, it can be (pre)compiled
and shipped as object code, if needed.

14.Conclusions

The adaptive automata can be implemented using various
languages both imperative or functional. We have tried:
Oberon-2, C++, Haskell.
The theory and technology may have multiple appliances:
video alarm systems [Sme 09], anti-virus products,
automatic observers, music synthesis and recognition,
voice identification systems...and maybe more.

15.Present and the next step

The main iresearch is actually focus on testing the limits
of adaptive automata and decid how kind of applications
are suitable for them. There are some things well
established:

ADFA may be used as part of compilers and interpreters,
also for DSL's production. In fact this was the starting
point of our research: to avoid the usual specifications
needed by a lexer generator.

There is also a dissertation by Smeu Florin [Sme 09], one
of our students, which had implemented ADFA using the
C++ language on the Linux platform and used them in
order to built alarms triggered by image changes. The
images was provided by a web-cam via the video4linux
interface . The experiment was a success and the student

won a prize for that work. The ADFA was trained using a static
image of the guarded area. An other student, Bǎlǎiţǎ Constantin
[Bal 08] had tested the ability of ADFA as being used as engine
for anti-spam filters. He also succeeds. Anti spam filters are also
a good application of ADFA.

Other applications: some of our students was requested to try to
apply the ADFAs in other projects, included here being the music
recognition and music synthesis. We do not have their results
available here, now.

16. References

[Aab-96] Aaby, A. Anthony; Haskell Tutorial
http://www.cs.wwc.edu/~cs_dept/KU/PR/Haskell.html

[Aab-05] Aaby, Anthony; Popa, Dan; Construcţia
compilatoarelor folosind Flex şi Bison, Edusoft, Bacǎu, 2005

[Arm01] Armour Philip: The business and software: Zeppelins
and jet planes: a methaphor for modern software projects.
Comm. Of ACM, 44(10):13-15 Oct.2001

[Aho07] Alfred Aho, Monica Lam, Ravi Sethi, Jeffrey Ullman,
Compilers Principles, Techniques, & Tools, sec.ed.2007, Pearson
Education (chap 3, pp 109-189)

[Bal 08] Bǎlǎiţǎ, Constantin; Aplicaţii ale automatelor adaptive
la realizarea sistemelor anti-spam (Applications of the ADFA at
the anti-spam filters building), disertation, Univ. din Bacǎu,
2008

[Pey-02] Peyton Jones, Simon (editor); Haskell 98 Languages
and Libraries – The revised Report, Cambridge Univ., Sept.2002

[Pop04] Popa Dan; Adaptable Tokenizer for Programming
Languages , Simpozionul International al Tinerilor Cercetatori,
ASEM, Chisinau 2004, pg 55-57, ISBN 9975-75-239-x

[Pop05] Popa Dan ; Adaptive DFA based on array of sets, Studii
si Cercetari Ştiinţifice, Seria Matematica, Nr 15 (2005) p 113-
121, ISSN 1224 - 2519

[Sme 09] Smeu Florin: Sistem de supraveghere video bazat pe
automat adaptiv. (Video surveillancee system based on adaptive
automata), dissertation, Univ. of Bacǎu , 2009
 http://stiinte.ub.ro/cercetare/c-conferinte/106/327

