Category theory

From HaskellWiki
Revision as of 04:11, 14 February 2023 by Atravers (talk | contribs)
Jump to navigation Jump to search
Haskell theoretical foundations

General:
Mathematics - Category theory
Research - Curry/Howard/Lambek

Lambda calculus:
Alpha conversion - Beta reduction
Eta conversion - Lambda abstraction

Other:
Recursion - Combinatory logic
Chaitin's construction - Turing machine
Relational algebra

Category theory can be helpful in understanding Haskell's type system. There exists a "Haskell category", of which the objects are Haskell types, and the morphisms from types a to b are Haskell functions of type a -> b.

The Haskell wikibooks has an introduction to Category theory, written specifically with Haskell programmers in mind.

Definition of a category

A category consists of two collections:

Ob, the objects of

Ar, the arrows of (which are not the same as Arrows defined in GHC)

Each arrow in Ar has a domain, dom , and a codomain, cod , each chosen from Ob. The notation means is an arrow with domain and codomain . Further, there is a function called composition, such that is defined only when the codomain of is the domain of , and in this case, has the domain of and the codomain of .

In symbols, if and , then .

Also, for each object , there is an arrow , (often simply denoted as or , when there is no chance of confusion).

Axioms

The following axioms must hold for to be a category:

  1. If then (left and right identity)
  2. If and and , then (associativity)

Examples of categories

  • Set, the category of sets and set functions.
  • Mon, the category of monoids and monoid morphisms.
  • Monoids are themselves one-object categories.
  • Grp, the category of groups and group morphisms.
  • Rng, the category of rings and ring morphisms.
  • Grph, the category of graphs and graph morphisms.
  • Top, the category of topological spaces and continuous maps.
  • Preord, the category of preorders and order preserving maps.
  • CPO, the category of complete partial orders and continuous functions.
  • Cat, the category of categories and functors.
  • Hask
  • the category of data types and functions on data structures
  • the category of functions and data flows (~ data flow diagram)
  • the category of stateful objects and dependencies (~ object diagram)
  • the category of values and value constructors
  • the category of states and messages (~ state diagram)

Further definitions

With examples in Haskell at:

Categorical programming

Catamorphisms and related concepts, categorical approach to functional programming, categorical programming. Many materials cited here refer to category theory, so as an introduction to this discipline see the #See also section.

Haskell libraries and tools

Books

  • Bartosz Milewski Category Theory for Programmers. Series of blog posts turned into a book. Covers many abstractions and constructions starting from basics: category, functor up to kan extensions, topos, enriched categories, F-algebras. There are video recordings with those content: part 1, part II and part III.
  • Michael Barr and Charles Wells: Toposes, Triples and Theories. The online, freely available book is both an introductory and a detailed description of category theory. It also contains a category-theoretical description of the concept of monad (but calling it a triple instead of monad).
  • R. F. C. Walters: Categories and Computer Science. Category Theory has, in recent years, become increasingly important and popular in computer science, and many universities now introduce Category Theory as part of the curriculum for undergraduate computer science students. Here, the theory is developed in a straightforward way, and is enriched with many examples from computer science.
  • Arbib&Manes: Arrow, Structures and Functors - The Categorical Imperative. (c)1975 Academic Press, ISBN 0-12-059060-3. Sadly now out of print but very little prerequisite knowledge is needed. It covers monads and the Yoneda lemma.
  • Eugenia Cheng: The Joy of Abstraction. An introduction to category theory for anyone who wants to get into the formality of the subject but does not necessarily have the mathematical background to read a standard textbook.

See also