Euler problems/91 to 100: Difference between revisions
No edit summary |
No edit summary |
||
Line 77: | Line 77: | ||
Solution: | Solution: | ||
<haskell> | <haskell> | ||
problem_93 = | import Data.List | ||
import Control.Monad | |||
solve [] [x] = [x] | |||
solve ns stack = | |||
pushes ++ ops | |||
where | |||
pushes = do | |||
x <- ns | |||
solve (x `delete` ns) (x:stack) | |||
ops = do | |||
guard (length stack > 1) | |||
x <- opResults (stack!!0) (stack!!1) | |||
solve ns (x : drop 2 stack) | |||
opResults a b = | |||
[a*b,a+b,a-b] ++ (if b /= 0 then [a / b] else []) | |||
results xs = fun 1 ys | |||
where | |||
ys = nub $ sort $ map truncate $ | |||
filter (\x -> x > 0 && floor x == ceiling x) $ solve xs [] | |||
fun n (x:xs) | |||
|n == x =fun (n+1) xs | |||
|otherwise=n-1 | |||
cmp a b = results a `compare` results b | |||
main = | |||
appendFile "p93.log" $ show $ | |||
maximumBy cmp $ [[a,b,c,d] | | |||
a <- [1..10], | |||
b <- [a+1..10], | |||
c <- [b+1..10], | |||
d <- [c+1..10] | |||
] | |||
problem_93 = main | |||
</haskell> | </haskell> | ||
Revision as of 12:09, 10 January 2008
Problem 91
Find the number of right angle triangles in the quadrant.
Solution:
reduce x y = (quot x d, quot y d)
where d = gcd x y
problem_91 n =
3*n*n + 2* sum others
where
others =[min xc yc|
x1 <- [1..n],
y1 <- [1..n],
let (yi,xi) = reduce x1 y1,
let yc = quot (n-y1) yi,
let xc = quot x1 xi
]
Problem 92
Investigating a square digits number chain with a surprising property.
Solution:
import Data.List
import Data.Map(fromList,(!))
pow2=[a*a|a<-[0..9]]
sum_pow 1=0
sum_pow 89=1
sum_pow x= sum_pow(sum [pow2 !! y |y<-digits x])
sumMap=fromList[(k,
fromList[(i,sum_pow ki)
|i<-[0..1000],
let ki=k*1000+i
])|
k<-[0..400]
]
fastsumpow x
|x<400000=sumMap!d!m
|otherwise=fastsumpow(sum [pow2 !! y |y<-digits x])
where
(d,m)=divMod x 1000
digits n
{- change 123 to [3,2,1]
-}
|n<10=[n]
|otherwise= y:digits x
where
(x,y)=divMod n 10
groups=100000
problem_92 b=sum [fastsumpow a|a<-[1+b*groups..groups+b*groups]]
google num
=if (num>99)
then return()
else do let lst=[show$problem_92 num ," ",(show num),"\n"]
appendFile "files.log" $foldl (++) "" lst
google (num+1)
main=google 0
split :: Char -> String -> [String]
split = unfoldr . split'
split' :: Char -> String -> Maybe (String, String)
split' c l
| null l = Nothing
| otherwise = Just (h, drop 1 t)
where (h, t) = span (/=c) l
sToInt x=((+0).read) $head$split ' ' x
problem_92a=do
x<-readFile "files.log"
print $sum$map sToInt $lines x
Problem 93
Using four distinct digits and the rules of arithmetic, find the longest sequence of target numbers.
Solution:
import Data.List
import Control.Monad
solve [] [x] = [x]
solve ns stack =
pushes ++ ops
where
pushes = do
x <- ns
solve (x `delete` ns) (x:stack)
ops = do
guard (length stack > 1)
x <- opResults (stack!!0) (stack!!1)
solve ns (x : drop 2 stack)
opResults a b =
[a*b,a+b,a-b] ++ (if b /= 0 then [a / b] else [])
results xs = fun 1 ys
where
ys = nub $ sort $ map truncate $
filter (\x -> x > 0 && floor x == ceiling x) $ solve xs []
fun n (x:xs)
|n == x =fun (n+1) xs
|otherwise=n-1
cmp a b = results a `compare` results b
main =
appendFile "p93.log" $ show $
maximumBy cmp $ [[a,b,c,d] |
a <- [1..10],
b <- [a+1..10],
c <- [b+1..10],
d <- [c+1..10]
]
problem_93 = main
Problem 94
Investigating almost equilateral triangles with integral sides and area.
Solution:
import List
findmin d = d:head [[n,m]|m<-[1..10],n<-[1..10],n*n==d*m*m+1]
pow 1 x=x
pow n x =mult x $pow (n-1) x
where
mult [d,a, b] [_,a1, b1]=d:[a*a1+d*b*b1,a*b1+b*a1]
--find it looks like (5-5-6)
f556 =takeWhile (<10^9)
[n2|i<-[1..],
let [_,m,_]=pow i$findmin 12,
let n=div (m-1) 6,
let n1=4*n+1, -- sides
let n2=3*n1+1 -- perimeter
]
--find it looks like (5-6-6)
f665 =takeWhile (<10^9)
[n2|i<-[1..],
let [_,m,_]=pow i$findmin 3,
mod (m-2) 3==0,
let n=div (m-2) 3,
let n1=2*n,
let n2=3*n1+2
]
problem_94=sum f556+sum f665-2
Problem 95
Find the smallest member of the longest amicable chain with no element exceeding one million.
Solution which avoid visiting a number more than one time :
import Data.Array.Unboxed
import qualified Data.IntSet as S
import Data.List
takeUntil _ [] = []
takeUntil pred (x:xs) = x : if pred x then takeUntil pred xs else []
chain n s = lgo [n] $ properDivisorsSum ! n
where lgo xs x | x > 1000000 || S.notMember x s = (xs,[])
| x `elem` xs = (xs,x : takeUntil (/= x) xs)
| otherwise = lgo (x:xs) $ properDivisorsSum ! x
properDivisorsSum :: UArray Int Int
properDivisorsSum = accumArray (+) 1 (0,1000000)
$ (0,-1):[(k,factor)|
factor<-[2..1000000 `div` 2]
, k<-[2*factor,2*factor+factor..1000000]
]
base = S.fromList [1..1000000]
problem_95 = fst $ until (S.null . snd) f ((0,0),base)
where
f (p@(n,m), s) = (p', s')
where
setMin = head $ S.toAscList s
(explored, chn) = chain setMin s
len = length chn
p' = if len > m then (minimum chn, len) else p
s' = foldl' (flip S.delete) s explored
Here is a more straightforward solution, without optimization. Yet it solves the problem in a few seconds when compiled with GHC 6.6.1 with the -O2 flag. I like to let the compiler do the optimization, without cluttering my code.
This solution avoids using unboxed arrays, which many consider to be somewhat of an imperitive-style hack. In fact, no memoization at all is required.
import Data.List (foldl1', group)
merge xs@(x:xt) ys@(y:yt) = case compare x y of
LT -> x : (merge xt ys)
EQ -> x : (merge xt yt)
GT -> y : (merge xs yt)
diff xs@(x:xt) ys@(y:yt) = case compare x y of
LT -> x : (diff xt ys)
EQ -> diff xt yt
GT -> diff xs yt
primes = [2,3,5] ++ (diff [7,9..] nonprimes)
nonprimes = foldr1 f . map g $ tail primes
where f (x:xt) ys = x : (merge xt ys)
g p = [ n*p | n <- [p,p+2..]]
fstfac x = [(head a ,length a)|a<-group$primeFactors x]
-- The sum of all proper divisors of n.
sumDivi m =
product [div (a^(n+1)-1) (a-1)|
(a,n)<-fstfac m
]-m
primeFactors = pf primes
where
pf ps@(p:ps') n
| p * p > n = [n]
| r == 0 = p : pf ps q
| otherwise = pf ps' n
where
(q, r) = n `divMod` p
-- The longest chain of numbers is (n, k), where
-- n is the smallest number in the chain, and k is the length
-- of the chain. We limit the search to chains whose
-- smallest number is no more than m and, optionally, whose
-- largest number is no more than m'.
chain s n n'
| n' == n = s
| n' < n = []
| (< n') 1000000 = []
| n' `elem` s = []
| otherwise = chain(n' : s) n $ sumDivi n'
findChain n = length$chain [] n $ sumDivi n
longestChain =
foldl1' cmpChain [(n, findChain n) | n <- [12496..15000]]
where
cmpChain p@(n, k) q@(n', k')
| (k, negate n) < (k', negate n') = q
| otherwise = p
problem_95 = fst$longestChain
Problem 96
Devise an algorithm for solving Su Doku puzzles.
See numerous solutions on the Sudoku page.
Problem 97
Find the last ten digits of the non-Mersenne prime: 28433 × 27830457 + 1.
Solution:
mulMod :: Integral a => a -> a -> a -> a
mulMod a b c= (b * c) `rem` a
squareMod :: Integral a => a -> a -> a
squareMod a b = (b * b) `rem` a
pow' :: (Num a, Integral b) => (a -> a -> a) -> (a -> a) -> a -> b -> a
pow' _ _ _ 0 = 1
pow' mul sq x' n' = f x' n' 1
where
f x n y
| n == 1 = x `mul` y
| r == 0 = f x2 q y
| otherwise = f x2 q (x `mul` y)
where
(q,r) = quotRem n 2
x2 = sq x
powMod :: Integral a => a -> a -> a -> a
powMod m = pow' (mulMod m) (squareMod m)
problem_97 =
flip mod limit $ 28433 * powMod limit 2 7830457 + 1
where
limit=10^10
Problem 98
Investigating words, and their anagrams, which can represent square numbers.
Solution:
import Data.List
import Data.Maybe
-- Replace each letter of a word, or digit of a number, with
-- the index of where that letter or digit first appears
profile :: Ord a => [a] -> [Int]
profile x = map (fromJust . flip lookup (indices x)) x
where
indices = map head . groupBy fstEq . sort . flip zip [0..]
-- Check for equality on the first component of a tuple
fstEq :: Eq a => (a, b) -> (a, b) -> Bool
fstEq x y = (fst x) == (fst y)
-- The histogram of a small list
hist :: Ord a => [a] -> [(a, Int)]
hist = let item g = (head g, length g) in map item . group . sort
-- The list of anagram sets for a word list.
anagrams :: Ord a => [[a]] -> [[[a]]]
anagrams x = map (map snd) $ filter (not . null . drop 1) $
groupBy fstEq $ sort $ zip (map hist x) x
-- Given two finite lists that are a permutation of one
-- another, return the permutation function
mkPermute :: Ord a => [a] -> [a] -> ([b] -> [b])
mkPermute x y = pairsToPermute $ concat $
zipWith zip (occurs x) (occurs y)
where
pairsToPermute ps = flip map (map snd $ sort ps) . (!!)
occurs = map (map snd) . groupBy fstEq . sort . flip zip [0..]
problem_98 :: [String] -> Int
problem_98 ws = read $ head
[y | was <- sortBy longFirst $ anagrams ws, -- word anagram sets
w1:t <- tails was, w2 <- t,
let permute = mkPermute w1 w2,
nas <- sortBy longFirst $ anagrams $
filter ((== profile w1) . profile) $
dropWhile (flip longerThan w1) $
takeWhile (not . longerThan w1) $
map show $ map (\x -> x * x) [1..], -- number anagram sets
x:t <- tails nas, y <- t,
permute x == y || permute y == x
]
run_problem_98 :: IO Int
run_problem_98 = do
words_file <- readFile "words.txt"
let words = read $ '[' : words_file ++ "]"
return $ problem_98 words
-- Sort on length of first element, from longest to shortest
longFirst :: [[a]] -> [[a]] -> Ordering
longFirst (x:_) (y:_) = compareLen y x
-- Is y longer than x?
longerThan :: [a] -> [a] -> Bool
longerThan x y = compareLen x y == LT
-- Compare the lengths of lists, with short-circuiting
compareLen :: [a] -> [a] -> Ordering
compareLen (_:xs) y = case y of (_:ys) -> compareLen xs ys
_ -> GT
compareLen _ [] = EQ
compareLen _ _ = LT
Problem 99
Which base/exponent pair in the file has the greatest numerical value?
Solution:
import Data.List
split :: Char -> String -> [String]
split = unfoldr . split'
split' :: Char -> String -> Maybe (String, String)
split' c l
| null l = Nothing
| otherwise = Just (h, drop 1 t)
where (h, t) = span (/=c) l
lognum [a, b]=b*log a
logfun x=lognum$map ((+0).read) $split ',' x
problem_99 file =
head$map fst $ sortBy (\(_,a) (_,b) -> compare b a) $
zip [1..] $map logfun $lines file
main=do
f<-readFile "base_exp.txt"
print$problem_99 f
Problem 100
Finding the number of blue discs for which there is 50% chance of taking two blue.
Solution:
nextAB a b
|a+b>10^12 =[a,b]
|otherwise=nextAB (3*a+2*b+2) (4*a+3*b+3)
problem_100=(+1)$head$nextAB 14 20