# Currying

### From HaskellWiki

(moved sectioning examples to 'Section of an infix operator') |
(Composing functions with multiple values) |
||

(One intermediate revision by one user not shown) | |||

Line 26: | Line 26: | ||

But there's more that's going on than immediately meets the untrained eye. It's a two-part process. First, <haskell>div 11</haskell> is evaluated and ''returns a function'' of type <haskell>Int -> Int</haskell> Then that resulting function is applied to the value <hask>2</hask>, and yields <hask>5</hask>. | But there's more that's going on than immediately meets the untrained eye. It's a two-part process. First, <haskell>div 11</haskell> is evaluated and ''returns a function'' of type <haskell>Int -> Int</haskell> Then that resulting function is applied to the value <hask>2</hask>, and yields <hask>5</hask>. | ||

− | + | You'll notice that the notation for types reflects this: you can read <haskell>Int -> Int -> Int</haskell> incorrectly as "takes two <hask>Int</hask>s and returns an <hask>Int</hask>", but what it's ''really'' saying is "takes an <hask>Int</hask> and returns something of the type <hask>Int -> Int</hask>" -- that is, it returns a function that takes an <hask>Int</hask> and returns an <hask>Int</hask>. (One can write the type as <hask>Int x Int -> Int</hask> if you really mean the former -- but since all functions in Haskell are curried, that's not legal Haskell. Alternatively, using tuples, you can write <hask>(Int, Int) -> Int</hask>, but keep in mind that the tuple constructor <hask>(,)</hask> itself can be curried.) | |

− | You'll notice that the notation for types reflects this: you can read <haskell>Int -> Int -> Int</haskell> incorrectly as "takes two <hask>Int</hask>s and returns an <hask>Int</hask>", but what it's ''really'' saying is "takes an <hask>Int</hask> and returns something of the type <hask>Int -> Int</hask>--that is, it returns a function that takes an <hask>Int</hask> and returns an <hask>Int</hask>. (One can write the type as <hask>Int x Int -> Int</hask> if you really mean the former--but since all functions in Haskell are curried, that's not legal Haskell. Alternatively, using tuples, you can write <hask>(Int, Int) -> Int</hask>, but keep in mind that the tuple constructor <hask>(,)</hask> itself can be curried.) | + | |

Much of the time, currying can be ignored by the new programmer. The major advantage of considering all functions as curried is theoretical: formal proofs are easier when all functions are treated uniformly (one argument in, one result out). Having said that, there ''are'' Haskell idioms and techniques for which you need to understand currying. | Much of the time, currying can be ignored by the new programmer. The major advantage of considering all functions as curried is theoretical: formal proofs are easier when all functions are treated uniformly (one argument in, one result out). Having said that, there ''are'' Haskell idioms and techniques for which you need to understand currying. | ||

Line 36: | Line 35: | ||

* Sometimes it's valuable to think about functions abstractly without specifically giving all their arguments: this is the [[Pointfree]] style. | * Sometimes it's valuable to think about functions abstractly without specifically giving all their arguments: this is the [[Pointfree]] style. | ||

* Sometimes half the work of the function can be done looking only at the first argument (but there really ''is'' only one argument, remember?): see [[functional dispatch]]. | * Sometimes half the work of the function can be done looking only at the first argument (but there really ''is'' only one argument, remember?): see [[functional dispatch]]. | ||

+ | * Conversion between curried and uncurried style allows [[Composing functions with multiple values|composition of functions with multiple values]] | ||

== Exercises == | == Exercises == | ||

* Simplify <hask>curry id</hask> <!-- (,) --> | * Simplify <hask>curry id</hask> <!-- (,) --> | ||

+ | * Simplify <hask>uncurry const</hask> <!-- fst --> | ||

+ | * Express <hask>snd</hask> using <hask>curry</hask> or <hask>uncurry</hask> and other basic Prelude functions and without lambdas <!-- uncurry (flip const) --> | ||

* Write the function <hask>\(x,y) -> (y,x)</hask> without lambda and with only Prelude functions <!-- uncurry (flip (curry id)) --> | * Write the function <hask>\(x,y) -> (y,x)</hask> without lambda and with only Prelude functions <!-- uncurry (flip (curry id)) --> |

## Revision as of 09:54, 3 January 2008

Currying is the process of transforming a function that takes multiple arguments into a function that takes just a single argument and returns another function if any arguments are still needed.

f :: a -> b -> c

is the **curried** form of

g :: (a, b) -> c

f = curry g g = uncurry f

Both forms are equally expressive. It holds

f x y = g (x,y) ,

however the curried form is usually more convenient because it allows partial application.

In Haskell, *all* functions are considered curried: That is, *all functions in Haskell take just single arguments.*

div :: Int -> Int -> Int

div 11

*returns a function*of type

Int -> Int

Int -> Int -> Int

*really*saying is "takes an

Much of the time, currying can be ignored by the new programmer. The major advantage of considering all functions as curried is theoretical: formal proofs are easier when all functions are treated uniformly (one argument in, one result out). Having said that, there *are* Haskell idioms and techniques for which you need to understand currying.

See

- partial application
- Section of an infix operator
- Sometimes it's valuable to think about functions abstractly without specifically giving all their arguments: this is the Pointfree style.
- Sometimes half the work of the function can be done looking only at the first argument (but there really
*is*only one argument, remember?): see functional dispatch. - Conversion between curried and uncurried style allows composition of functions with multiple values

## Exercises

- Simplify curry id
- Simplify uncurry const
- Express usingsndorcurryand other basic Prelude functions and without lambdasuncurry
- Write the function without lambda and with only Prelude functions\(x,y) -> (y,x)