# Difference between revisions of "Euler problems/101 to 110"

m (Corrected links to the Euler project) |
(Removing category tags. See Talk:Euler_problems) |
||

Line 1: | Line 1: | ||

− | [[Category:Programming exercise spoilers]] |
||

== [http://projecteuler.net/index.php?section=view&id=101 Problem 101] == |
== [http://projecteuler.net/index.php?section=view&id=101 Problem 101] == |
||

Investigate the optimum polynomial function to model the first k terms of a given sequence. |
Investigate the optimum polynomial function to model the first k terms of a given sequence. |
||

Line 79: | Line 78: | ||

problem_110 = undefined |
problem_110 = undefined |
||

</haskell> |
</haskell> |
||

− | |||

− | [[Category:Tutorials]] |
||

− | [[Category:Code]] |

## Revision as of 12:13, 30 September 2007

## Contents

## Problem 101

Investigate the optimum polynomial function to model the first k terms of a given sequence.

Solution:

```
problem_101 = undefined
```

## Problem 102

For how many triangles in the text file does the interior contain the origin?

Solution:

```
problem_102 = undefined
```

## Problem 103

Investigating sets with a special subset sum property.

Solution:

```
problem_103 = undefined
```

## Problem 104

Finding Fibonacci numbers for which the first and last nine digits are pandigital.

Solution:

```
problem_104 = undefined
```

## Problem 105

Find the sum of the special sum sets in the file.

Solution:

```
problem_105 = undefined
```

## Problem 106

Find the minimum number of comparisons needed to identify special sum sets.

Solution:

```
problem_106 = undefined
```

## Problem 107

Determining the most efficient way to connect the network.

Solution:

```
problem_107 = undefined
```

## Problem 108

Solving the Diophantine equation 1/x + 1/y = 1/n.

Solution:

```
problem_108 = undefined
```

## Problem 109

How many distinct ways can a player checkout in the game of darts with a score of less than 100?

Solution:

```
problem_109 = undefined
```

## Problem 110

Find an efficient algorithm to analyse the number of solutions of the equation 1/x + 1/y = 1/n.

Solution:

```
problem_110 = undefined
```