# Euler problems/151 to 160

From HaskellWiki

< Euler problems

Revision as of 19:57, 27 September 2007 by YitzGale (talk | contribs) (problem_152: only need to consider primes less than 80.)

## Contents

## Problem 151

Paper sheets of standard sizes: an expected-value problem.

Solution:

```
problem_151 = undefined
```

## Problem 152

Writing 1/2 as a sum of inverse squares

Note that if p is an odd prime, the sum of inverse squares of all terms divisible by p must have reduced denominator not divisible by p.

Solution:

```
import Data.Ratio
import Data.List
invSq n = 1 % (n * n)
sumInvSq = sum . map invSq
subsets (x:xs) = let s = subsets xs in s ++ map (x :) s
subsets _ = [[]]
primes = 2 : 3 : 7 : [p | p <- [11, 13..79],
all (\q -> p `mod` q /= 0) [3, 5, 7]]
-- All subsets whose sum of inverse squares,
-- when added to x, does not contain a factor of p
pfree s x p = [(y, t) | t <- subsets s, let y = x + sumInvSq t,
denominator y `mod` p /= 0]
-- Verify that we need not consider terms divisible by 11, or by any
-- prime greater than 13. Nor need we consider any term divisible
-- by 25, 27, 32, or 49.
verify = all (\p -> null $ tail $ pfree [p, 2*p..85] 0 p) $
11 : dropWhile (< 17) primes ++ [25, 27, 32, 49]
-- All pairs (x, s) where x is a rational number whose reduced
-- denominator is not divisible by any prime greater than 3;
-- and s is all sets of numbers up to 80 divisible
-- by a prime greater than 3, whose sum of inverse squares is x.
only23 = foldl f [(0, [[]])] [13, 7, 5]
where
f a p = collect $ [(y, u ++ v) | (x, s) <- a,
(y, v) <- pfree (terms p) x p,
u <- s]
terms p = [n * p | n <- [1..80`div`p],
all (\q -> n `mod` q /= 0) $
11 : takeWhile (>= p) [13, 7, 5]
]
collect = map (\z -> (fst $ head z, map snd z)) .
groupBy fstEq . sortBy cmpFst
fstEq (x, _) (y, _) = x == y
cmpFst (x, _) (y, _) = compare x y
-- All subsets (of an ordered set) whose sum of inverse squares is x
findInvSq x y = f x $ zip3 y (map invSq y) (map sumInvSq $ init $ tails y)
where
f 0 _ = [[]]
f x ((n, r, s):ns)
| r > x = f x ns
| s < x = []
| otherwise = map (n :) (f (x - r) ns) ++ f x ns
f _ _ = []
-- All numbers up to 80 that are divisible only by the primes
-- 2 and 3 and are not divisible by 32 or 27.
all23 = [n | a <- [0..4], b <- [0..2], let n = 2^a * 3^b, n <= 80]
solutions = if verify
then [sort $ u ++ v | (x, s) <- only23,
u <- findInvSq (1%2 - x) all23,
v <- s]
else undefined
problem_152 = length solutions
```

## Problem 153

Investigating Gaussian Integers

Solution:

```
problem_153 = undefined
```

## Problem 154

Exploring Pascal's pyramid.

Solution:

```
problem_154 = undefined
```

## Problem 155

Counting Capacitor Circuits.

Solution:

```
problem_155 = undefined
```

## Problem 156

Counting Digits

Solution:

```
problem_156 = undefined
```

## Problem 157

Solving the diophantine equation 1/a+1/b= p/10n

Solution:

```
problem_157 = undefined
```

## Problem 158

Exploring strings for which only one character comes lexicographically after its neighbour to the left.

Solution:

```
problem_158 = undefined
```

## Problem 159

Digital root sums of factorisations.

Solution:

```
problem_159 = undefined
```

## Problem 160

Factorial trailing digits

Solution:

```
problem_160 = undefined
```