# Haskell a la carte

### From HaskellWiki

(Difference between revisions)

m (→Potages) |
|||

Line 64: | Line 64: | ||

== Potages == | == Potages == | ||

− | The best soup is made by combining | + | The best soup is made by combining the available ingredients. |

* | * | ||

Line 74: | Line 74: | ||

</haskell> | </haskell> | ||

::The dot <hask>f . g</hask> is good old function composition <math>f \circ g</math>: first apply g, then apply f. Use it for squaring something twice. | ::The dot <hask>f . g</hask> is good old function composition <math>f \circ g</math>: first apply g, then apply f. Use it for squaring something twice. | ||

− | |||

== Plats principaux == | == Plats principaux == |

## Revision as of 13:45, 14 December 2007

New to Haskell? This menu will give you a first impression. Don't read all the explanations, or you'll be starved before the meal.

## Contents |

## 1 Apéritifs

Foretaste of an excellent meal.

qsort :: Ord a => [a] -> [a] qsort [] = [] qsort (x:xs) = qsort (filter (<x) xs) ++ [x] ++ qsort (filter (>=x) xs))

- Quicksort in three lines (!). Sorts not only integers but anything that can be compared.

fibs = 1:1:zipWith (+) fibs (tail fibs)

- The
*infinite*list of fibonacci numbers. Just don't try to print all of it.

- The

linecount = interact $ show . length . lines wordcount = interact $ show . length . words

- Count the number of lines or words from standard input.

## 2 Entrées

How to start eating?

square x = x*x

- The function which maps a number to its square. While we commonly write parenthesis around function arguments in mathematics and most programming languages, a simple space is enough in Haskell. We're going to apply functions to arguments all around, so why clutter the notation with unnecessary ballast?

square :: Integer -> Integer square x = x*x

- Squaring again, this time with a
*type signature*which says that squaring maps integers to integers. In mathematics, we'd write . Every expression in Haskell has a type and the compiler will automatically infer (= figure out) one for you if you're too lazy to write down a type signature yourself. Of course, parenthesis are allowed for grouping, like inwhich is 36 compared tosquare (4+2)which is 16+2=18.square 4 + 2

- Squaring again, this time with a

square :: Num a => a -> a square x = x*x

- Squaring yet again, this time with a more general type signature. After all, we can square anything () that looks like a number (a). By the way, this general type is the one that the compiler will infer forNum aif you omit an explicit signature.square

- Squaring yet again, this time with a more general type signature. After all, we can square anything (

average x y = (x+y)/2

- The average of two numbers. Multiple arguments are separated by spaces.

average :: Double -> Double -> Double average x y = (x+y)/2

- Average again, this time with a type signature. Looks a bit strange, but that's the spicey
*currying*. In fact,is a function that takes only one argument (average) but returns a function with one argument (Double).Double -> Double

- Average again, this time with a type signature. Looks a bit strange, but that's the spicey

## 3 Potages

The best soup is made by combining the available ingredients.

(.) :: (b -> c) -> (a -> b) -> (a -> c) (.) f g x = f (g x) fourthPower = square . square

- The dot is good old function composition : first apply g, then apply f. Use it for squaring something twice.f . g

- The dot