# Lambda abstraction

### From HaskellWiki

(Difference between revisions)

(eta -> beta plus minor changes) |
BrettGiles (Talk | contribs) (Categorize, add infobox.) |
||

Line 1: | Line 1: | ||

+ | [[Category:Glossary]] | ||

+ | {{Foundations infobox}} | ||

A ''lambda abstraction'' is another name for an [[anonymous function]]. It gets its name from the usual notation for writing it: for example, <math>\lambda x \to x^2</math>. (Another common but equivalent notation is: <math>\lambda x . \ x^2</math>.) | A ''lambda abstraction'' is another name for an [[anonymous function]]. It gets its name from the usual notation for writing it: for example, <math>\lambda x \to x^2</math>. (Another common but equivalent notation is: <math>\lambda x . \ x^2</math>.) | ||

## Revision as of 18:44, 5 February 2007

A *lambda abstraction* is another name for an anonymous function. It gets its name from the usual notation for writing it: for example, . (Another common but equivalent notation is: .)

\

->

\ x -> x * x

There is actually a whole mathematical theory devoted to expressing computation entirely using lambda abstractions: the lambda calculus. Most functional programming languages (including Haskell) are based upon some extension of this idea.

When a lambda abstraction is applied to a value—for instance, —the result of the expression is determined by replacing every free occurrence of the parameter variable (in this case *x*) with the parameter value (in this case 7). This is a beta reduction.