Shootout/Mandelbrot
A Shootout Entry for the mandelbrot benchmark.
Proposed entry
Note the explicit disabling of -optc-O3, and turning on sse stuff. Makes a huge difference on a Pentium M, and a P4.
{-# OPTIONS -fexcess-precision -fbang-patterns #-}
--
-- The Computer Language Shootout
-- http://shootout.alioth.debian.org/
--
-- Contributed by Spencer Janssen, Trevor McCort, Christophe Poucet and Don Stewart
--
-- Must be compiled with the -fexcess-precision flag as a pragma. GHC
-- currently doesn't recognise the -fexcess-precision flag on the command
-- line (!).
--
-- The following flags are suggested when compiling:
--
-- -O -fglasgow-exts -optc-march=pentium4
-- -fbang-patterns -funbox-strict-fields -optc-O2 -optc-mfpmath=sse -optc-msse2
--
import System
import System.IO
import Foreign
import Foreign.Marshal.Array
main = do
w <- getArgs >>= readIO . head
let n = w `div` 8
m = 2 / fromIntegral w
putStrLn ("P4\n"++show w++" "++show w)
p <- mallocArray0 n
unfold n (next_x w m n) p (T 1 0 0 (-1))
{-# NOINLINE unfold #-}
unfold :: Int -> (T -> Maybe (Word8,T)) -> Ptr Word8 -> T -> IO ()
unfold !i !f !ptr !x0 = loop x0
where
loop !x = go ptr 0 x
go !p !n !x = case f x of
Just (w,y) | n /= i -> poke p w >> go (p `plusPtr` 1) (n+1) y
Nothing -> hPutBuf stdout ptr i
_ -> hPutBuf stdout ptr i >> loop x
data T = T !Int !Int !Int !Double
next_x !w !iw !bw (T bx x y ci)
| y == w = Nothing
| bx == bw = Just (loop_x w x 8 iw ci 0, T 1 0 (y+1) (iw+ci))
| otherwise = Just (loop_x w x 8 iw ci 0, T (bx+1) (x+8) y ci)
loop_x :: Int -> Int -> Int -> Double -> Double -> Word8 -> Word8
loop_x !w !x !n !iw !ci !b
| x < w = if n == 0
then b
else loop_x w (x+1) (n-1) iw ci (b+b+v)
| otherwise = b `shiftL` n
where
v = fractal 0 0 (fromIntegral x * iw - 1.5) ci 50
fractal :: Double -> Double -> Double -> Double -> Int -> Word8
fractal !r !i !cr !ci !k
| r2 + i2 > 4 = 0
| k == 0 = 1
| otherwise = fractal (r2-i2+cr) ((r+r)*i+ci) cr ci (k-1)
where
(!r2,!i2) = (r*r,i*i)
Old entry
Faster. But still, but gcc is getting in the way!
{-# OPTIONS -fbang-patterns -funbox-strict-fields #-}
--
-- The Computer Language Shootout
-- http://shootout.alioth.debian.org/
--
-- Contributed by Trevor McCort, Spencer Janssen and Don Stewart
-- For best results compile with:
--
-- ghc -O3 -fglasgow-exts -optc-ffast-math -optc-O3 -optc-march=pentium4 -fexcess-precision
--
import System
import Foreign
import qualified Data.ByteString as B
main = do
w <- getArgs >>= readIO . head
let n = w `div` 8
loop_y = B.unfoldrN n (next_x w (2/fromIntegral w) n)
unfold x = case loop_y x of
(s, Nothing) -> B.putStr s
(s, Just x) -> B.putStr s >> unfold x
putStrLn ("P4\n"++show w++" "++show w)
unfold (T 1 0 0 (-1))
data T = T !Int !Int !Int !Double
next_x !w !iw !bw (T bx x y ci)
| y == w = Nothing
| bx == bw = Just (loop_x w x 8 iw ci 0, T 1 0 (y+1) (iw+ci))
| otherwise = Just (loop_x w x 8 iw ci 0, T (bx+1) (x+8) y ci)
loop_x !w !x !n !iw !ci !b
| x < w = if n == 0
then b
else loop_x w (x+1) (n-1) iw ci (b+b+v)
| otherwise = b `shiftL` n
where
v = fractal 0 0 (fromIntegral x * iw - 1.5) ci 50
fractal :: Double -> Double -> Double -> Double -> Int -> Word8
fractal !r !i !cr !ci !k
| r2 + i2 > 4 = 0
| k == 0 = 1
| otherwise = fractal (r2-i2+cr) ((r+r)*i+ci) cr ci (k-1)
where
(!r2,!i2) = (r*r,i*i)
Current entry
Submitted. Strangely, seems to run slowly on the shootout box.
{-# OPTIONS -fbang-patterns #-}
--
-- The Computer Language Shootout
-- http://shootout.alioth.debian.org/
--
-- Contributed by Trevor McCort, Spencer Janssen and Don Stewart
-- For best results compile with:
--
-- ghc -O3 -fglasgow-exts -optc-ffast-math -optc-O3 -optc-march=pentium4 -fexcess-precision
--
import System
import Foreign
import qualified Data.ByteString.Lazy as B
main = do
(!w) <- getArgs >>= readIO . head
let sh = show $ fromEnum w
!bw = ceiling (w / 8) :: Int
!iw = 2/w
gb !ci !x !b !n
| x == w = b `shiftL` n
| n == 0 = b
| otherwise = gb ci (x+1) (b+b+(lp 0 0 (x * iw - 1.5) ci 50)) (n-1)
ms (bx, x, y, ci)
| y == w = Nothing
| bx == bw = Just (gb ci x 0 8,(1,0,y+1, iw+ci))
| otherwise = Just (gb ci x 0 8,(bx+1,x+8,y,ci))
putStrLn ("P4\n"++sh++" "++sh)
B.putStr (B.unfoldr ms (1, 0, 0, (-1)))
lp :: Double -> Double -> Double -> Double -> Int -> Word8
lp !r !i !cr !ci !k
| r2 + i2 > 4 = 0
| k == 0 = 1
| otherwise = lp (r2-i2+cr) ((r+r)*i+ci) cr ci (k-1)
where
(!r2,!i2) = (r*r,i*i)
{-# INLINE lp #-}
Old entry
-- The Great Computer Language Shootout
-- http://shootout.alioth.debian.org/
-- Based on version by Don Stewart
-- Contributed by Trevor McCort
import System
import Data.Bits
import Data.Word
import GHC.Base
main = do
w <- getArgs >>= readIO . head
let ch = chr.fromIntegral
sh = show $ fromEnum w
(bw::Int) = ceiling $ w / 8
gb x ci b n
| x == w = ch $ b `shiftL` n
| n == 0 = ch b
| otherwise = gb (x+1) ci (b+b+(lp 0.0 0.0 50 cr ci)) (n-1)
where cr = x * 2.0 / w - 1.5
ms bx x y ci
| y == w = []
| bx == bw = gb x ci 0 8 : ms 1 0 (y+1) ((y+1) * 2.0 / w - 1.0)
| otherwise = gb x ci 0 8 : ms (bx+1) (x+8) y ci
putStrLn ("P4\n"++sh++" "++sh)
putStr $ ms 1 0 0 (-1.0)
lp r i k cr ci | r2 + i2 > (4.0 :: Double) = 0 :: Word32
| k == (0 :: Word32) = 1
| otherwise = lp (r2-i2+cr) ((r+r)*i+ci) (k-1) cr ci
where r2 = r*r ; i2 = i*i
Current Entry
Shortest entry in any language.
As with all programs using doubles, compile with -fexcess-precision for big speedups.
-- The Great Computer Language Shootout
-- http://shootout.alioth.debian.org/
-- Based on the SML version, written by Matthias Blume.
-- Implemented in Haskell by Don Stewart
--
import System; import Data.Bits; import Data.Word; import GHC.Base
main = do (w::Word32) <- getArgs >>= readIO . head
putStrLn ("P4\n"++show w++" "++show w) >> yl 0 w w
yl y h w = if y < h then xl 0 y 0 8 h w else return ()
xl x y b n h w
| x == w = putChar (unsafeChr $ b `shiftL` n) >> yl (y+1) h w
| otherwise = do
(b',n') <- if n == 0 then putChar (chr b) >> return (0,8) else return (b,n)
xl (x+1) y (b'+b'+ fromEnum (p x y w h)) (n'-1) h w
p (x::Word32) y w h = lp 0.0 0.0 50 (f x * 2.0 / f w - 1.5) (f y * 2.0 / f h - 1.0)
where f = fromIntegral
lp r i k cr ci | r2 + i2 > (4.0 :: Double) = 0 :: Word32
| k == (0 :: Word32) = 1
| otherwise = lp (r2-i2+cr) ((r+r)*i+ci) (k-1) cr ci
where r2 = r*r ; i2 = i*i
Current Entry
The old entry below is 1.2x slower than this version.
This is a translation of the fast SML version. Additionally, we get some good gains by using Word32. (I wonder if this will apply elsewhere?) The -optc-O2 helps as well (another thing to keep in mind for other entries).
{-# OPTIONS -O2 -optc-O2 #-}
--
-- Based on the SML version, written by Matthias Blume.
-- Implemented in Haskell by Don Stewart
--
import System
import Data.Bits
import Data.Word
import GHC.Base
main = do w <- getArgs >>= return . read . head
putStrLn $ "P4\n" ++ show w ++ " " ++ show w
yl 0 w w
yl y h w = if y < h then xl 0 y 0 8 h w else return ()
xl x y b n h w
| x == w = putChar (unsafeChr $ b `shiftL` n) >> yl (y+1) h w
| otherwise = do
(b',n') <- if n == 0 then putChar (chr b) >> return (0,8) else return (b,n)
xl (x+1) y (b'+b'+ fromEnum (p x y w h)) (n'-1) h w
p :: Word32 -> Word32 -> Word32 -> Word32 -> Word32
p x y w h = lp 0.0 0.0 50 (f x * 2.0 / f w - 1.5) (f y * 2.0 / f h - 1.0)
where f = fromIntegral
lp r i k cr ci | r2 + i2 > (4.0 :: Double) = 0 :: Word32
| k == (0 :: Word32) = 1
| otherwise = lp (r2-i2+cr) ((r+r)*i+ci) (k-1) cr ci
where (r2,i2) = (r*r, i*i)
Original entry
Quite good, though all the lists seem a bit worrying. Also, is putStr legal in this entry?
-- contributed by Greg Buchholz
-- modified by Alson Kemp
-- improvements by Jean-Philippe Bernardy
-- compile: ghc -O2 -o mandelbrot mandelbrot.hs
-- run: mandelbrot 600 >mandel.pbm
import Complex
import System(getArgs)
import Char(chr)
import System.IO
limit = 4.0::Double
iter = 50::Int
main = do [arg] <- getArgs
let width = read arg
--AK:optional;prevent newline mangle on PC
hSetBinaryMode stdout True
putStr $ "P4\n" ++ show width ++ " " ++ show width ++ "\n"
mapM_ putStr $ map (makePBM 0 0) $ fractal (points width width)
points :: Int -> Int -> [[Complex Double]]
points width height = [[(2.0*x/w - 1.5) :+ (2.0*y/h - 1) | x<-[0..w-1]] | y<-[0..h-1]]
where w = fromIntegral width
h = fromIntegral height
fractal :: [[Complex Double]] -> [[Int]]
fractal = map $ map $ fractal' (0.0 :+ 0.0) iter
-- magnitude is sloooooowwwwww, so hand code abs^2
fractal' :: Complex Double -> Int -> Complex Double -> Int
fractal' z i c | (realPart z')*(realPart z') + (imagPart z')*(imagPart z') > limit = 0
| (i == 1) = 1
| otherwise = fractal' z' (i-1) c
where z' = z*z+c
makePBM :: Int -> Int -> [Int] -> [Char]
makePBM i acc [] = chr (acc * 2^(8-i)) : []
makePBM i acc (x:xs) | i==8 = chr acc : makePBM 0 0 (x:xs)
| otherwise = makePBM (i+1) (acc*2 + x) xs