New monads/MonadRandomSplittable
From HaskellWiki
< New monads(Difference between revisions)
m (fix a MonadRandomSplittable "law") 

(5 intermediate revisions by 2 users not shown) 
Latest revision as of 22:10, 27 November 2007
MonadRandom
RandomGen
split
class (MonadRandom m) => MonadRandomSplittable m where splitRandom :: m a > m a instance (Monad m, RandomGen g) => MonadRandomSplittable (RandomT g m) where splitRandom ma = (RandomT . liftState) split >>= lift . evalRandomT ma
MonadRandomSplittable can then be derived for Rand by GHC:
newtype Rand g a = Rand { unRand :: RandomT g Identity a } deriving (Functor, Monad, MonadRandom, MonadRandomSplittable)
Some potentially useful functions
splitRandoms :: MonadRandomSplittable m => [m a] > m [a] splitRandoms [] = splitRandom $ return [] splitRandoms (x:xs) = splitRandom $ liftM2 (:) x (splitRandoms xs) getRandoms :: (MonadRandomSplittable m, Random a) => m [a] getRandoms = liftM2 (:) getRandom (splitRandom getRandoms) getRandomRs :: (MonadRandomSplittable m, Random a) => (a, a) > m [a] getRandomRs b = liftM2 (:) (getRandomR b) (splitRandom (getRandomRs b))
[edit] 1 Example of usage
test :: Rand StdGen [Bool] > (Int, [Bool], Int) test ma = evalRand (liftM3 (,,) (getRandomR (0,99)) ma (getRandomR (0,99))) (mkStdGen 0)
Then
*MonadRandom> test (replicateM 0 getRandom) (45,[],55) *MonadRandom> test (replicateM 2 getRandom) (45,[True,True],0) *MonadRandom> test (splitRandom $ replicateM 0 getRandom) (45,[],16) *MonadRandom> test (splitRandom $ replicateM 2 getRandom) (45,[False,True],16) *MonadRandom> case test undefined of (a,_,c) > (a,c) *** Exception: Prelude.undefined *MonadRandom> case test (splitRandom undefined) of (a,_,c) > (a,c) (45,16)
[edit] 2 Laws
It is not clear to me exactly what lawssplitRandom
ma
mb
liftM3 (\a _ c > (a,c)) getRandom (splitRandom ma) getRandom
and
liftM3 (\a _ c > (a,c)) getRandom (splitRandom mb) getRandom
return the same pair.
For monad transformers, it would also be nice if
splitRandom undefined === splitRandom (return ()) >> lift undefined
For example,
>runIdentity $ runRandomT (splitRandom (return ()) >> lift undefined >> return ()) (mkStdGen 0) ((),40014 2147483398) >runIdentity $ runRandomT (splitRandom undefined >> return ()) (mkStdGen 0) ((),40014 2147483398)
But
>runRandomT (splitRandom (return ()) >> lift undefined >> return ()) (mkStdGen 0) *** Exception: Prelude.undefined >runRandomT (splitRandom undefined >> return ()) (mkStdGen 0) *** Exception: Prelude.undefined
Rand
>runRand (splitRandom undefined >> return ()) (mkStdGen 0) ((),40014 2147483398)
[edit] 3 Why?
InreplicateM 100 (splitRandom expensiveAction)
The following constructs a tree of infinite depth and width:
import Data.Tree import Data.List makeRandomTree = liftM2 Node (getRandomR ('a','z')) (splitRandoms $ repeat makeRandomTree)
By removing the RNGdependencies, infinite random data structures can be constructed lazily.
And for completeness the nonmonadic version:
randomTree g = Node a (map randomTree gs) where (a, g') = randomR ('a','z') g gs = unfoldr (Just . split) g'
Note that the monadic version does more split operations, so yields different results.