Difference between revisions of "Output/Input"

From HaskellWiki
Jump to: navigation, search
m (Reference replaced)
m
 
(11 intermediate revisions by the same user not shown)
Line 27: Line 27:
 
</haskell>
 
</haskell>
  
As the returned unit-value <code>()</code> contains no useful information, that type can be simplified further:
+
...because <i>"logically"</i> a function in Haskell has no observable effects - being exact requires a change of notation:
  
 
<haskell>
 
<haskell>
() -> a
+
() --> (a, ())
 
</haskell>
 
</haskell>
  
<sub>Why <i>"approximately"</i>? Because <i>"logically"</i> a function in Haskell has no observable effects.</sub>
+
The <i>"result"</i> (of type <code>a</code>) can then be <i>"returned"</i> directly:
  
----
 
=== <u>Previously seen</u> ===
 
 
The type <code>() -> a</code>  (or variations of it) have appeared elsewhere - examples include:
 
 
* page 2 of 13 in [https://fi.ort.edu.uy/innovaportal/file/20124/1/22-landin_correspondence-between-algol-60-and-churchs-lambda-notation.pdf A Correspondence Between ALGOL 60 and Church's Lambda-Notation: Part I] by Peter Landin:
 
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
 
The use of <code>λ</code>, and in particular (to avoid an irrelevant bound variable) of <code>λ()</code> , to delay and possibly avoid evaluation is exploited repeatedly in our model of ALGOL 60. A function that requires an argument-list of length zero is called a ''none-adic'' function.
 
</div>
 
<sup> </sup>
 
 
<haskell>
 
<haskell>
(\ () -> …) :: () -> a
+
() --> a
 
</haskell>
 
</haskell>
|}
 
 
* page 148 of 168 in [https://dblp.org/rec/phd/ethos/Gordon92.html Functional programming and Input/Output] by Andrew Gordon:
 
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
<pre>
 
abstype 'a Job = JOB of unit -> 'a
 
</pre>
 
</div>
 
 
<sup> </sup>
 
<sup> </sup>
<haskell>
 
data Job a = JOB (() -> a)
 
</haskell>
 
|}
 
  
* page 3 of [https://www.cs.bham.ac.uk/~udr/papers/assign.pdf Assignments for Applicative Languages] by Vipin Swarup, Uday S. Reddy and Evan Ireland:
+
----
:{|
+
=== <u>Previously seen</u> ===
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
A value of type <code>Obs 𝜏</code> is called an ''observer''.  Such a value observes (i.e. views or inspects) a state and returns a value of type <code>𝜏</code>. [...] An observer type <code>Obs 𝜏</code> may be viewed as an implicit function space from the set of states to the type <code>𝜏</code>.
 
</div>
 
<sup> </sup>
 
<haskell>
 
type Obs tau = State -> tau
 
</haskell>
 
|}
 
  
* [https://image.slidesharecdn.com/lazyio-120422092926-phpapp01/95/lazy-io-15-728.jpg page 15] of ''Non-Imperative Functional Programming'' by Nobuo Yamashita:
+
Variants of <code>() --> a</code> have appeared elsewhere - examples include:
  
:{|
+
* page 2 of 13 in [https://dl.acm.org/doi/pdf/10.1145/363744.363749 A Correspondence Between ALGOL 60 and Church's Lambda-Notation: Part I] by Peter Landin:
<haskell>
 
type a :-> b = OI a -> b
 
</haskell>
 
|}
 
 
 
* [http://h2.jaguarpaw.co.uk/posts/mtl-style-for-free MTL style for free] by Tom Ellis:
 
 
 
:{|
 
<haskell>
 
data Time_ a = GetCurrentTime (UTCTime -> a)
 
</haskell>
 
|}
 
 
 
* [http://h2.jaguarpaw.co.uk/posts/impure-lazy-language An impure lazy programming language], also by Tom Ellis:
 
 
 
:{|
 
<haskell>
 
data IO a = IO (() -> a)
 
</haskell>
 
|}
 
 
 
* page 2 of [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.9269&rep=rep1&type=pdf Unique Identifiers in Pure Functional Languages] by Péter Diviánszky:
 
 
:{|
 
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
[...] The type <code>Id</code> can be hidden by the synonym data type
 
<pre>
 
:: Create a  :==  Id -> a
 
</pre>
 
</div>
 
<sup> </sup>
 
<haskell>
 
type Create a = Id -> a
 
</haskell>
 
|}
 
  
* page 7 of [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.701.930&rep=rep1&type=pdf Functional Reactive Animation] by Conal Elliott and Paul Hudak:
+
The use of <code>λ</code>, and in particular (to avoid an irrelevant bound variable) of <code>λ()</code> , to delay and possibly avoid evaluation is exploited repeatedly in our model of ALGOL 60. A function that requires an argument-list of length zero is called a ''none-adic'' function.
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
An early implementation of Fran represented behaviors as implied in the formal semantics:
 
<haskell>
 
data Behavior a = Behavior (Time -> a)
 
</haskell>
 
</div>
 
|}
 
 
 
* page 26 of [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3579&rep=rep1&type=pdf How to Declare an Imperative] by Philip Wadler:
 
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
The type <code>'a io</code> is represented by a function expecting a dummy argument of type <code>unit</code> and returning a value of type <code>'a</code>.
 
<pre>
 
type 'a io = unit -> a
 
</pre>
 
 
</div>
 
</div>
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
type Io a = () -> a
+
(\ () --> ) :: () --> a
</haskell>
 
|}
 
 
 
* The [https://www.vex.net/~trebla/haskell/IO.xhtml Haskell I/O Tutorial] by Albert Lai:
 
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
But I can already tell you why we cannot follow other languages and use simply <code>X</code> or <code>() -> X</code>.
 
</div>
 
|}
 
 
 
* [http://comonad.com/reader/2011/free-monads-for-less-3 Free Monads for Less (Part 3 of 3): Yielding IO] by Edward Kmett:
 
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
<haskell>
 
newtype OI a = forall o i. OI (FFI o i) o (i -> a) deriving Functor
 
</haskell>
 
</div>
 
<sup> </sup>
 
<haskell>
 
type Oi a = forall i . i -> a
 
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 167: Line 66:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
class Io a where run :: () -> a
+
class Io a where run :: () --> a
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 180: Line 79:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
data IO t = Action (() -> t)
+
data IO t = Action (() --> t)
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 198: Line 97:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
type T a = () -> a
+
type T a = () --> a
</haskell>
 
|}
 
 
 
* [https://stackoverflow.com/questions/45136398/is-the-monadic-io-construct-in-haskell-just-a-convention/45141523#45141523 luqui's answer] to [https://stackoverflow.com/questions/45136398/is-the-monadic-io-construct-in-haskell-just-a-convention this SO question]:
 
:{|
 
|<haskell>
 
newtype IO a = IO { runIO :: () -> a }
 
</haskell>
 
|}
 
 
 
* [https://stackoverflow.com/questions/15418075/the-reader-monad/15419592#15419592 luqui's answer] to [https://stackoverflow.com/questions/15418075/the-reader-monad this SO question]:
 
:{|
 
|<haskell>
 
newtype Supply r a = Supply { runSupply :: r -> a }
 
 
</haskell>
 
</haskell>
|}
 
 
* [https://stackoverflow.com/questions/51770808/how-exactly-does-ios-work-under-the-hood/51772273#51772273 chi's answer] to [https://stackoverflow.com/questions/51770808/how-exactly-does-ios-work-under-the-hood this SO question]:
 
:{|
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
As long as we have its special case <code>IO c = () ~> c</code>, we can represent (up to isomorphism) […] <code>a ~> c</code> […]
 
</div>
 
 
|}
 
|}
  
Line 233: Line 111:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
type IO a = (->) Void a
+
type IO a = (-->) Void a
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 249: Line 127:
 
<haskell>
 
<haskell>
 
class SimpleIO a where
 
class SimpleIO a where
     run :: () -> a
+
     run :: () --> a
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 263: Line 141:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
data IO a = IO (() -> a)
+
data IO a = IO (() --> a)
__construct :: (() -> a) -> IO a
+
__construct :: (() --> a) -> IO a
 
__construct = IO
 
__construct = IO
 
</haskell>
 
</haskell>
Line 276: Line 154:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
data IO a = Wrap (() -> a)
+
data IO a = Wrap (() --> a)
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 292: Line 170:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
type IO t = () -> t
+
type IO t = () --> t
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 306: Line 184:
 
<sup> </sup>
 
<sup> </sup>
 
<haskell>
 
<haskell>
type Io a = () -> a
+
type Io a = () --> a
 
</haskell>
 
</haskell>
 
|}
 
|}
Line 314: Line 192:
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 
[...] So <code>suspend () -> A</code> offers us the exact same guarantees as <code>IO<A></code>.
 
[...] So <code>suspend () -> A</code> offers us the exact same guarantees as <code>IO<A></code>.
 +
</div>
 +
|}
 +
 +
==== Avoiding alternate annotations ====
 +
 +
Having to deal with both <code>-></code> and <code>--></code> is annoying - another option is to use a different argument type, instead of <code>()</code>:
 +
 +
* page 3 of [https://www.cs.bham.ac.uk/~udr/papers/assign.pdf Assignments for Applicative Languages] by Vipin Swarup, Uday S. Reddy and Evan Ireland:
 +
:{|
 +
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 +
A value of type <code>Obs 𝜏</code> is called an ''observer''.  Such a value observes (i.e. views or inspects) a state and returns a value of type <code>𝜏</code>. [...] An observer type <code>Obs 𝜏</code> may be viewed as an implicit function space from the set of states to the type <code>𝜏</code>.
 +
</div>
 +
<sup> </sup>
 +
<haskell>
 +
type Obs tau = State -> tau
 +
</haskell>
 +
|}
 +
 +
* [https://image.slidesharecdn.com/lazyio-120422092926-phpapp01/95/lazy-io-15-728.jpg page 15] of ''Non-Imperative Functional Programming'' by Nobuo Yamashita:
 +
:{|
 +
<haskell>
 +
type a :-> b = OI a -> b
 +
</haskell>
 +
|}
 +
 +
* [http://h2.jaguarpaw.co.uk/posts/mtl-style-for-free MTL style for free] by Tom Ellis:
 +
:{|
 +
<haskell>
 +
data Time_ a = GetCurrentTime (UTCTime -> a)
 +
</haskell>
 +
|}
 +
 +
* page 2 of [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.9269&rep=rep1&type=pdf Unique Identifiers in Pure Functional Languages] by Péter Diviánszky:
 +
:{|
 +
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 +
[...] The type <code>Id</code> can be hidden by the synonym data type
 +
<pre>
 +
:: Create a  :==  Id -> a
 +
</pre>
 +
</div>
 +
<sup> </sup>
 +
<haskell>
 +
type Create a = Id -> a
 +
</haskell>
 +
|}
 +
 +
* page 7 of [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.701.930&rep=rep1&type=pdf Functional Reactive Animation] by Conal Elliott and Paul Hudak:
 +
:{|
 +
|<div style="border-left:1px solid lightgray; padding: 1em" alt="blockquote">
 +
An early implementation of Fran represented behaviors as implied in the formal semantics:
 +
<haskell>
 +
data Behavior a = Behavior (Time -> a)
 +
</haskell>
 
</div>
 
</div>
 
|}
 
|}
Line 343: Line 274:
 
  -- utility definitions
 
  -- utility definitions
 
type OI  =  Tree Exterior
 
type OI  =  Tree Exterior
 +
 +
main'    :: OI -> ()
 +
main'    =  ...
  
 
getChar' :: OI -> Char
 
getChar' :: OI -> Char
Line 369: Line 303:
  
 
----
 
----
 +
=== <u>Other interfaces</u> ===
 +
 +
In addition to the [[Monad|current]] one:
 +
 +
<haskell>
 +
type M a  =  OI -> a
 +
 +
unit      :: a -> M a
 +
unit x    =  \ u -> let !_ = partOI u in x
 +
 +
bind      :: M a -> (a -> M b) -> M b
 +
bind m k  =  \ u -> let !(u1, u2) = partOI u in
 +
                    let !x = m u1 in
 +
                    let !y = k x u2 in
 +
                    y
 +
</haskell>
 +
 +
the <code>OI</code> interface can be used to implement other models of I/O:
 +
 +
* [[Comonad|comonad]]:
 +
 +
:<haskell>
 +
type C a        =  (OI, a)
 +
 +
extract          :: C a -> a
 +
extract (u, x)  =  let !_ = partOI u in x
 +
 +
duplicate        :: C a -> C (C a)
 +
duplicate (u, x) =  let !(u1, u2) = partOI u in
 +
                    (u2, (u1, x))
 +
 +
extend          :: (C a -> b) -> C a -> C b
 +
extend h (u, x)  =  let !(u1, u2) = partOI u in
 +
                    let !y        = h (u1, x) in
 +
                    (u2, y)
 +
</haskell>
 +
 +
* [[Arrow|arrow]]:
 +
 +
:<haskell>
 +
type A b c  =  (OI -> b) -> (OI -> c)
 +
 +
arr          :: (b -> c) -> A b c
 +
arr f        =  \ c' u -> f $! c' u
 +
 +
both        :: A b c -> A b' c' -> A (b, b') (c, c')
 +
f' `both` g' =  \ c' u -> let !(u1:u2:u3:_) = partsOI u in
 +
                          let !(x, x')      = c' u1 in
 +
                          let !y            = f' (unit x) u2 in
 +
                          let !y'          = g' (unit x') u3 in
 +
                          (y, y')                         
 +
 +
unit        :: a -> OI -> a
 +
unit x u    = let !_ = partOI u in x
 +
</haskell>
 +
 +
including [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.3579&rep=rep1&type=pdf those used in earlier versions] of Haskell:
 +
 +
* dialogues:
  
 +
:<haskell>
 +
runD :: ([Response] -> [Request]) -> OI -> ()
 +
runD d u = foldr (\ (!_) -> id) () $ yet $ \ l -> zipWith respond (d l) (partsOI u)
 +
 +
yet :: (a -> a) -> a
 +
yet f = f (yet f)
 +
 +
respond :: Request -> OI -> Response
 +
respond Getq    u = let !c = getChar' u in Getp c
 +
respond (Putq c) u = let !_ = putChar' c u in Putp
 +
 +
data Request  = Getq | Putq Char
 +
data Response = Getp Char | Putp
 +
</haskell>
 +
 +
* continuations:
 +
 +
:<haskell>
 +
type Answer = OI -> ()
 +
 +
runK :: Answer -> IO -> ()
 +
runK a u = a u
 +
 +
doneK :: Answer
 +
doneK = \ u -> let !_ = partOI u in ()
 +
 +
getcharK :: (Char -> Answer) -> Answer
 +
getcharK k  = \ u -> let !(u1, u2) = partOI u in
 +
                      let !c        = getChar' u1 in
 +
                      let !a        = k c in
 +
                      a u2
 +
 +
putcharK :: Char -> Answer -> Answer
 +
putcharK c a = \ u -> let !(u1, u2) = partOI u in
 +
                      let !_        = putChar' c u1 in
 +
                      a u2
 +
</haskell>
 +
 +
and even that <s><i>pass-the-planet</i></s> state-based style, which is also used by [https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.935&rep=rep1&type=pdf Clean], [https://staff.science.uva.nl/c.u.grelck/publications/HerhSchoGrelDAMP09.pdf Single-Assignment C] and as part of the I/O model used for the verification of interactive programs in [https://cakeml.org/vstte18.pdf CakeML], remembering that <code>OI</code> values can only be used once:
 +
 +
<haskell>
 +
newtype World = W OI
 +
 +
getcharL :: World -> (Char, World)
 +
getcharL (W u) = let !(u1, u2) = partOI u in
 +
                let !c = getChar' u1 in
 +
                (c, W u2)
 +
 +
putcharL :: Char -> World -> World
 +
putcharL c (W u) = let !(u1, u2) = partOI u in
 +
                  let !_ = putChar' u1 in
 +
                  W u2
 +
</haskell>
 +
<sup> </sup>
 +
 +
----
 
=== <u>See also</u> ===
 
=== <u>See also</u> ===
  
* [https://pqnelson.github.io/2021/07/29/monadic-io-in-ml.html Monadic IO in Standard ML]
+
* [[Plainly partible]]
 
* [[Disposing of dismissives]]
 
* [[Disposing of dismissives]]
 
* [[IO then abstraction]]
 
* [[IO then abstraction]]
* [https://okmij.org/ftp/Computation/IO-monad-history.html The IO monad in 1965]
+
* [https://pqnelson.github.io/2021/07/29/monadic-io-in-ml.html Monadic IO in Standard ML]

Latest revision as of 12:45, 27 September 2022


Clearing away the smoke and mirrors

The implementation in GHC uses the following one:

type IO a  =  World -> (a, World)

An IO computation is a function that (logically) takes the state of the world, and returns a modified world as well as the return value. Of course, GHC does not actually pass the world around; instead, it passes a dummy “token,” to ensure proper sequencing of actions in the presence of lazy evaluation, and performs input and output as actual side effects!

A History of Haskell: Being Lazy With Class, Paul Hudak, John Hughes, Simon Peyton Jones and Philip Wadler.

...so what starts out as an I/O action of type:

World -> (a, World)

is changed by GHC to approximately:

() -> (a, ())

...because "logically" a function in Haskell has no observable effects - being exact requires a change of notation:

() --> (a, ())

The "result" (of type a) can then be "returned" directly:

() --> a


Previously seen

Variants of () --> a have appeared elsewhere - examples include:

The use of λ, and in particular (to avoid an irrelevant bound variable) of λ() , to delay and possibly avoid evaluation is exploited repeatedly in our model of ALGOL 60. A function that requires an argument-list of length zero is called a none-adic function.

(\ () --> ) :: () --> a
class IO[A](run: () => A)

class Io a where run :: () --> a
type IO<'T> = private | Action of (unit -> 'T)

data IO t = Action (() --> t)

Let's say you want to implement IO in SML :

structure Io : MONAD =
struct
  type 'a t = unit -> 'a
         ⋮
end

type T a = () --> a
(deftype #export (IO a)
  (-> Void a))

type IO a = (-->) Void a
abstract class SimpleIO<A> {
    abstract A run()
}

class SimpleIO a where
    run :: () --> a
__construct :: (-> a) -> IO a

[...] The parameter to the constructor must be a zero-parameter [none-adic] function that returns a value.

data IO a = IO (() --> a)
__construct :: (() --> a) -> IO a
__construct = IO

IO is a very simple monad that implements a slightly modified version of our abstract interface with the difference that instead of wrapping a value a, it wraps a side effect function () -> a.

data IO a = Wrap (() --> a)

The definition of IO<> is simple:

public delegate T IO<out T>();

[...]

  • IO<T> is used to represent a impure function. When a IO<T> function is applied, it returns a T value, with side effects.

type IO t = () --> t

So let’s implement the IO Monad right now and here. Given that OCaml is strict and that the order of function applications imposes the order of evaluation, the IO Monad is just a thunk, e.g.,

type 'a io = unit -> 'a

type Io a = () --> a

[...] So suspend () -> A offers us the exact same guarantees as IO<A>.

Avoiding alternate annotations

Having to deal with both -> and --> is annoying - another option is to use a different argument type, instead of ():

A value of type Obs 𝜏 is called an observer. Such a value observes (i.e. views or inspects) a state and returns a value of type 𝜏. [...] An observer type Obs 𝜏 may be viewed as an implicit function space from the set of states to the type 𝜏.

type Obs tau = State -> tau
  • page 15 of Non-Imperative Functional Programming by Nobuo Yamashita:
type a :-> b = OI a -> b
data Time_ a = GetCurrentTime (UTCTime -> a)

[...] The type Id can be hidden by the synonym data type

:: Create a  :==  Id -> a

type Create a = Id -> a

An early implementation of Fran represented behaviors as implied in the formal semantics:

data Behavior a = Behavior (Time -> a)

Of these, it is the implementation of OI a in Yamashita's oi package which is most interesting as its values are monousal - once used, their contents remain constant. This single-use property also appears in the implementation of the abstract decision type described by F. Warren Burton in Nondeterminism with Referential Transparency in Functional Programming Languages.


IO, redefined

Based on these and other observations, a reasonable distillment of these examples would be OI -> a, which then implies:

type IO a = OI -> a

Using Burton's pseudodata approach:

 -- abstract; single-use I/O-access mediator
data Exterior
getchar :: Exterior -> Char
putchar :: Char -> Exterior -> ()

 -- from section 2 of Burton's paper
data Tree a = Node { contents :: a,
                     left     :: Tree a,
                     right    :: Tree a }

 -- utility definitions
type OI  =  Tree Exterior

main'    :: OI -> ()
main'    =  ...

getChar' :: OI -> Char
getChar' =  getchar . contents

putChar' :: Char -> OI -> ()
putChar' c = putchar c . contents

part     :: OI -> (OI, OI)
parts    :: OI -> [OI]

part t   =  (left t, right t)
parts t  =  let !(t1, t2) = part t in
            t1 : parts t2

Of course, in an actual implementation OI would be abstract like World, and for similar reasons. This permits a simpler implementation for OI and its values, instead of being based on (theoretically) infinite structured values like binary trees. That simplicity has benefits for the OI interface, in this case:

data OI
part :: OI -> (OI, OI)
getChar' :: OI -> Char
putChar' :: Char -> OI -> ()


Other interfaces

In addition to the current one:

type M a   =  OI -> a

unit       :: a -> M a
unit x     =  \ u -> let !_ = partOI u in x 

bind       :: M a -> (a -> M b) -> M b
bind m k   =  \ u -> let !(u1, u2) = partOI u in
                     let !x = m u1 in
                     let !y = k x u2 in
                     y

the OI interface can be used to implement other models of I/O:

type C a         =  (OI, a)

extract          :: C a -> a
extract (u, x)   =  let !_ = partOI u in x

duplicate        :: C a -> C (C a)
duplicate (u, x) =  let !(u1, u2) = partOI u in
                    (u2, (u1, x))

extend           :: (C a -> b) -> C a -> C b
extend h (u, x)  =  let !(u1, u2) = partOI u in
                    let !y        = h (u1, x) in
                    (u2, y)
type A b c   =  (OI -> b) -> (OI -> c)

arr          :: (b -> c) -> A b c
arr f        =  \ c' u -> f $! c' u

both         :: A b c -> A b' c' -> A (b, b') (c, c')
f' `both` g' =  \ c' u -> let !(u1:u2:u3:_) = partsOI u in
                          let !(x, x')      = c' u1 in
                          let !y            = f' (unit x) u2 in
                          let !y'           = g' (unit x') u3 in
                          (y, y')                           

unit         :: a -> OI -> a
unit x u     = let !_ = partOI u in x

including those used in earlier versions of Haskell:

  • dialogues:
runD :: ([Response] -> [Request]) -> OI -> ()
runD d u = foldr (\ (!_) -> id) () $ yet $ \ l -> zipWith respond (d l) (partsOI u)

yet :: (a -> a) -> a
yet f = f (yet f)

respond :: Request -> OI -> Response
respond Getq     u = let !c = getChar' u in Getp c
respond (Putq c) u = let !_ = putChar' c u in Putp

data Request  = Getq | Putq Char
data Response = Getp Char | Putp
  • continuations:
type Answer = OI -> ()

runK :: Answer -> IO -> ()
runK a u = a u

doneK :: Answer
doneK = \ u -> let !_ = partOI u in ()

getcharK :: (Char -> Answer) -> Answer
getcharK k   = \ u -> let !(u1, u2) = partOI u in
                      let !c        = getChar' u1 in
                      let !a        = k c in
                      a u2

putcharK :: Char -> Answer -> Answer
putcharK c a = \ u -> let !(u1, u2) = partOI u in
                      let !_        = putChar' c u1 in
                      a u2

and even that pass-the-planet state-based style, which is also used by Clean, Single-Assignment C and as part of the I/O model used for the verification of interactive programs in CakeML, remembering that OI values can only be used once:

newtype World = W OI

getcharL :: World -> (Char, World)
getcharL (W u) = let !(u1, u2) = partOI u in
                 let !c = getChar' u1 in
                 (c, W u2)

putcharL :: Char -> World -> World
putcharL c (W u) = let !(u1, u2) = partOI u in
                   let !_ = putChar' u1 in
                   W u2


See also